51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于Jensen熵的運(yùn)動(dòng)想象腦電信號(hào)穩(wěn)態(tài)子空間分析

Finding stationary subspaces in motor imagery EEGsignal based on Jensen-Shannon divergence

作者: 張欣  戴加飛  李錦  侯鳳貞  王俊 
單位:南京郵電大學(xué)圖像處理與圖像通信江蘇省重點(diǎn)實(shí)驗(yàn)室(南京210003)
關(guān)鍵詞: 穩(wěn)態(tài)子空間分析;腦電信號(hào);Jensen熵;運(yùn)動(dòng)想象;KL散度 
分類號(hào):R318.04
出版年·卷·期(頁碼):2017·36·2(152-156)
摘要:

目的 雖然穩(wěn)態(tài)子空間分析(stationary subspace analysis, SSA) 算法在腦電研究領(lǐng)域取得了一定的成效,但目前該算法還不夠完善,腦電數(shù)據(jù)分類誤差還比較大,因此要想更好地研究腦電信號(hào),就必須進(jìn)一步加強(qiáng)算法優(yōu)化,減少分類誤差。本文提出了一種基于Jensen熵(Jensen-Shannon divergence, JSD)的穩(wěn)態(tài)子空間分析算法,并將改進(jìn)后的算法應(yīng)用到二類和四類運(yùn)動(dòng)想象腦電信號(hào)中。方法 將JSD代替原SSA算法中的KL散度(Kullback-Leibler divergence, KLD),對(duì)改進(jìn)后的算法(以下簡稱為JSSA算法)進(jìn)行模擬仿真,然后將SSA算法和JSSA算法應(yīng)用到二類和四類運(yùn)動(dòng)想象腦電信號(hào)中,對(duì)Graz2003和Graz2008數(shù)據(jù)集進(jìn)行分類提取,并用t檢驗(yàn)方法考量SSA算法和JSSA算法所得到的分類準(zhǔn)確率是否有顯著提高。結(jié)果 相比于普通算法,SSA算法可以提高運(yùn)動(dòng)想象腦電數(shù)據(jù)的分類準(zhǔn)確率,而且基于JSSA算法比基于SSA算法能使運(yùn)動(dòng)想象腦電信號(hào)分類效果更加準(zhǔn)確。結(jié)論 基于Jensen熵的運(yùn)動(dòng)想象腦電信號(hào)穩(wěn)態(tài)子空間分析算法相比于SSA算法準(zhǔn)確率更好,從而可以使運(yùn)動(dòng)想象腦電分類準(zhǔn)確率更高。

Objective Although the stationary subspace analysis (SSA) algorithm in EEG study makes certain achievements, the algorithm is still not perfect.Classification error of EEG data is relatively large, so it is necessary to further strengthen and optimize the algorithm and reduce the classification error.An SSA algorithm based on Jensen Shannon divergence (JSD) is proposed in this paper, and the improved algorithm is applied to the motor imagery EEG signal.Methods First, we elaborate the principle of SSA and JSD, and then use JSD to replace Kullback-Leibler divergence (KLD), and simulate the improved algorithm (as JSSA algorithm).The SSA algorithm and JSSA algorithm are applied to motor imagery EEG (data Graz2003 and Graz2008), and t test methods are applied for consideration of SSA and JSSA algorithm’s classification result which is significant to improve the accuracy.Results Compared with the common algorithm, SSA algorithm can improve the classification accuracy of the motor imagery EEG data, and the algorithm based on JSSA algorithm can make the classification results of movement imagination EEG signal more accurate than based on SSA.Conclusions Compared with the SSA algorithm, the accuracy of the JSD algorithm is better, so that the classification accuracy of motor imagery EEG is higher.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]