51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于投影矩陣廣義逆的CT重建迭代算法

Novel iterative algorithm for CT reconstruction based on theMoore-Penrose inverse of projection matrix

作者: 王會(huì)  徐亞楠  武王將  石宏理  楊智  羅述謙 
單位:首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院(北京100069)
關(guān)鍵詞: CT  圖像重建;迭代算法;廣義逆矩陣;稀疏矩陣;有限角度 
分類(lèi)號(hào):R318.04
出版年·卷·期(頁(yè)碼):2017·36·3(251-256)
摘要:

目的 在CT檢查時(shí),有限角度投影和稀疏矩陣投影能夠減少X射線的劑量,然而這會(huì)導(dǎo)致投影數(shù)據(jù)不足,給圖像重建帶來(lái)一定的困難。為了克服這一難題得到較好的重建圖像,本文提出一種基于計(jì)算投影矩陣廣義逆的CT迭代重建算法。 方法該算法在計(jì)算過(guò)程中,將重建圖像表示為投影矩陣以及其廣義逆的乘積。首先使用一階迭代計(jì)算廣義逆矩陣,但是由于投影矩陣和其廣義逆矩陣都比較大,在迭代過(guò)程中以投影和濾波反投影代替。然后通過(guò)不同的算法分別對(duì)平行束投影、有限角度投影、稀疏矩陣投影的數(shù)據(jù)進(jìn)行重建,并對(duì)重建結(jié)果的均方差、通用圖像質(zhì)量指標(biāo)以及圖像互信息進(jìn)行比較。 結(jié)果 本文提出的方法重建出圖像的均方差、通用圖像質(zhì)量指標(biāo)和圖像互信息更優(yōu),而且重建時(shí)間較短。 結(jié)論 該方法能夠在沒(méi)有未知圖像先驗(yàn)結(jié)構(gòu)信息和偽影猜想的情況下有效地提高重建圖像的質(zhì)量,而且該算法不需要計(jì)算投影過(guò)程,重建過(guò)程簡(jiǎn)單易行。


Objective In the CT examination, the limited-angle projection and sparse projection methods can be used to reduce the X-ray dose. However, these methods would result in the deficiency of the projection data and bringing certain difficulty for image reconstruction. For the purpose of overcoming the challenges and obtaining a higher quality reconstruction image, a new CT reconstruction method is proposed in this paper. Methods In the proposed method, the reconstruction image was expressed as the multiplication of projection matrix and its the Moose-Penrose pseudo-inverse. The first-order recursive formula was used to calculate the pseudo-inverse. However, the projection matrix and its the Moose-Penrose pseudo-inverse were replaced by projection and filtered back projection in the iterative process because of the difficulty of calculation. Then, the data of the parallel beam projection, the limited-angle projection and the sparse projection were reconstructed by different methods, and the mean square error (MSE), universal quality index (UQI) and mutual information (MI) were used to compare the results of the reconstruction images. Results The results of the MSE, UQI and MI by using the proposed method were better, and the time was less. Conclusions The proposed method can improve the quality of the reconstruction image efficiently without any prior structure information or an artificial assumption on the underlying image. Neither does it need the expression of projection process. The implementation of the proposed method is simple.

參考文獻(xiàn):

[1]Hsieh J. Computed tomography:principles,design,artifacts,and recent advances[C]. Bellingham,WA:SPIE,2009. 

[2]Kak AC. Slaney M. Principles of computerized tomographic imaging[M]. Piscataway, NJ:IEEE press,1988. 

[3]Faridani A. Introduction to the mathematics of computed tomography[J]. Inside Out:Inverse Problems and Applications,2003,47:1-46. 

[4]Luo J,Li W,Zhu Y. Reconstruction from limited-angle projections based on spectrum analysis[J]. IEEE Transactions on Image Processing,2010,19(1):131-140. 

[5]Liu B,Wang G,Ritman EL,et al. Image reconstruction from limited angle projections collected by multisource interior X-ray imaging systems[J]. Physics in medicine and biology,2011,56(19):6337. 

[6]Hanson KM,Wecksung GW. Bayesian approach to limited-angle reconstruction in computed tomography[J]. JOSA,1983,73(11):1501-1509. 

[7]Xu Q,Yu H,Mou X,et al. Low-dose X-ray CT reconstruction via dictionary learning[J]. IEEE Transactions on Medical Imaging,2012,31(9):1682-1697. 

[8]閆鑌,李磊. CT圖像重建算法[M]. 北京:科學(xué)出版社,2014:80-96. 

Yan Bin,Li Lei. Image Reconstruction Algorithm for CT[M]. Beijing:Science Press,2014:80-96. 

[9]Yu H,Ji C,Wang G. SART-Type image reconstruction from overlapped projections[J]. International Journal of Biomedical Imaging,2011,2011(815):1-7. 

[10]Kamphuis C,Beekman FJ. Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm[J]. IEEE Transactions on Medical Imaging,1998,17(6):1101-1105. 

[11]Manglos SH,Gagne GM,Krol A,et al. Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT[J]. Physics in Medicine and Biology,1995,40(7):1225. 

[12]De MB,Nuyts J,Dupont P,et al. An iterative maximum-likelihood polychromatic algorithm for CT[J]. IEEE Transactions on Medical Imaging,2001,20(10):999-1008. 

[13]Riviere PJL,Vargas PA. Monotonic penalized-likelihood image reconstruction for X-ray fluorescence computed tomography[J]. IEEE Transactions on Medical Imaging,2006,25(9):1117-1129. 

[14]Ben-Israel A,Greville TNE. Generalized Inverses:Theory and Applications[M]. New York:Springer Science & Business Media,2003. 

[15]Bian J,Siewerdsen JH,Han X,et al. Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT[J]. Physics in Medicine and Biology,2010,55(22):6575. 

[16]Wang Z,Bovik AC. A universal image quality index[J]. IEEE signal processing letters,2002,9(3):81-84. 


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]