51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
數(shù)字PCR中微滴生成尺寸與頻率的數(shù)值模擬

Numerical simulation of the size and frequency ofmicro-droplets in digital PCR

作者: 張森  馮繼宏  張弘  高辛未 
單位:北京工業(yè)大學(xué)生命科學(xué)與生物工程學(xué)院(北京100124)
關(guān)鍵詞: 數(shù)字PCR;微流體;兩相流;微液滴;流動(dòng)聚焦 
分類(lèi)號(hào):R318.04
出版年·卷·期(頁(yè)碼):2017·36·4(361-365)
摘要:

目的 微滴合成是數(shù)字PCR中的關(guān)鍵技術(shù),但其中兩相流速與生成微滴大小和頻率的關(guān)系尚不明確。本文采用VOF模型研究數(shù)字PCR系統(tǒng)中生成微滴的尺寸、頻率與兩相流速的關(guān)系。方法 將氟化油作為連續(xù)相,反應(yīng)液(水)作為離散相,通過(guò)求解整體的動(dòng)量方程和各自相的體積分?jǐn)?shù)連續(xù)方程來(lái)實(shí)現(xiàn)相與相間的界面追蹤,模擬出微通道內(nèi)兩相的流動(dòng)情況,對(duì)不同兩相流速下微通道內(nèi)微滴生成的尺寸和頻率進(jìn)行研究。結(jié)果 在不同的流速條件下,微通道內(nèi)會(huì)出現(xiàn)彈狀流、滴狀流和管狀流3種流型。并且,對(duì)于彈狀流和滴狀流,隨著連續(xù)相流速的增加,微液滴的生成尺寸減小,生成頻率增加;而隨著離散相流速的增加,微液滴的生成尺寸和頻率都會(huì)增加。結(jié)論 在滴狀流狀態(tài)下,當(dāng)連續(xù)相流速為0.048~0.064m/s,并且離散相流速為0.016~0.032m/s時(shí),可高效生成數(shù)字PCR微滴。

Objective Micro-droplets formation is one of key technologies in the digital PCR.However,the relationship between the two-phase flow rate and the size and frequency of produced micro-droplets is undeveloped.In this paper,we simulate this relationship with the volume of fluid (VOF) model in the digital PCR system.Methods We used fluorinated oil as the continuous phase and reactants (water) as the disperse phase.Through solving the momentum equation of the whole system and volume fraction equation,we monitored the profiles of produced droplets and simulated the two-phase flow in the crossing micro-channel.We mainly focused on the size and frequency of the produced droplets.Results Under different two-phase flow rates,there were three typical flow patterns:bubbly,slug and annular flow.Moreover,with the increasing of the continuous flow rate of slug flow and bubbly flow,the droplet size decreased and the frequency increased.And as the dispersed flow rate rising up,the size and the frequency of the produced micro-droplets increased accordingly.Conclusions Under slug flow,we can effectively produce micro-droplets for digital PCR when the continuous flow rate is at 0.048m/s to 0.064m/s and dispersed flow rate is at 0.016m/s to 0.032m/s,respectively.

參考文獻(xiàn):

[1]Keer JT,Birch L.Essentials of Nucleic Acid Analysis:A Robust Approach[M].Cambridge:RSC Publishing,2008.

[2]Sedlak RH,Jerome KR.Viral diagnostics in the era of digital polymerase chain reaction[J].Diagnostic Microbiology & Infectious Disease,2013,75(1):1-4.

[3]Guo MT,Rotem A,Heyman JA,et al.Droplet microfluidics for high-throughput biological assays[J].Lab on a Chip,2012,12(12):2146-2155.

[4]Seemann R,Brinkmann M,Pfohl T,et al.Droplet based microfluidics[J].Reports on Progress in Physics,2011,75(1):016601.

[5]Umbanhowar PB,Prasad V,Weitz DA.Monodisperse emulsion generation via drop break off in a coflowing stream[J].Langmuir,2000,16(2):347-351.

[6]Anna SL,Bontoux N,Stone HA.Formation of dispersions using “flow focusing” in microchannels[J].Applied Physics Letters,2003,82(3):364-366.

[7]Takeuchi S,Garstecki P,Weibel DB,et al.An axisymmetric flow-focusing microfluidic device[J].Advanced Materials,2005,17(8):1067-1072.

[8]Yobas L,Martens S,Ong WL,et al.High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets[J].Lab on a Chip,2006,6(8):1073-1079.

[9]Li W,Young EWK,Seo M,et al.Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators[J].Soft Matter,2008,4(2):258-262.

[10]Cubaud T,Mason TG.Capillary threads and viscous droplets in square microchannels[J].Physics of Fluids (1994-present),2008,20(5):053302.

[11]Jose BM,Cubaud T.Droplet arrangement and coalescence in diverging/converging microchannels[J].Microfluidics and Nanofluidics,2012,12(5):687-696.

[12]Li Z,Kang J,Park JH,et al.Numerical simulation of the droplet formation in a cross-junction microchannel using the Lattice Boltzmann Method[J].Journal of Mechanical Science and Technology,2007,21(1):162-173.

[13]Sur A,Yang L,Liu D.Experimental and numerical investigation of two-phase patterns in a cross-junction microfluidic chip[C]//ASME 2010 8th International Conference on Nanochannels,Microchannels,and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting.Montreal:American Society of Mechanical Engineers,2010,1771-1777.

[14]Zhang HB,Liu JP,Lai HX.Numerical simulation of jetting instability in flow focusing microfluidics[J].Key Engineering Materials,2014,609-610:630-636.

[15]Basova EY,Foret F.Droplet microfluidics in (bio)chemical analysis[J].Analyst,2015,140(1):22-38.

[16]Vladisavljevic GT,Kobayashi I,Nakajima M.Production of uniform droplets using membrane,microchannel and microfluidic emulsification devices[J].Microfluidics and Nanofluidics,2012,13(1):151-178.

[17]Larson JW,Zhong Q,Link DR.Digital analyte analysis:US,US8535889[P].2013-9-17[2016-5-10].

[18]王佳男.微通道中液液兩相流動(dòng)與混合過(guò)程的數(shù)值模擬[D].杭州:浙江大學(xué),2013.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]