51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
自回歸模型和隱馬爾可夫模型在癲癇腦電識(shí)別中的應(yīng)用

Application of hidden Markov model and autoregressive model indetection of epileptic electroencephalogram

作者: 李飛  戴加飛  李錦  王俊  侯鳳貞 
單位:南京郵電大學(xué),圖像處理與圖像通信江蘇省重點(diǎn)實(shí)驗(yàn)室(南京210003)
關(guān)鍵詞: 癲癇;腦電信號(hào);自回歸模型;隱馬爾可夫模型;腦機(jī)接口 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2017·36·5(478-482)
摘要:

目的 研究自回歸(autoregressive model,AR)模型和隱馬爾可夫模型(hidden Markov model,HMM)在癲癇腦電(electroencephalogram, EEG)識(shí)別中的應(yīng)用,以期減輕醫(yī)生工作量,減少人工識(shí)別主觀因素的影響。方法 使用基于聯(lián)合信息準(zhǔn)則(combined information criterion,CIC)的最佳階數(shù)AR模型對(duì)腦電信號(hào)進(jìn)行特征提取,連續(xù)密度隱馬爾可夫模型(continuous density hidden Markov model,CD-HMM)作為正常腦電和癲癇腦電的分類工具,對(duì)南京軍區(qū)總醫(yī)院的臨床腦電數(shù)據(jù)(8組采樣頻率為512Hz的16導(dǎo)正常、癲癇腦電信號(hào))進(jìn)行分析和識(shí)別。實(shí)驗(yàn)時(shí)對(duì)每一例樣本選取T3、T4、FP1、FP2、C3、C4六個(gè)導(dǎo)聯(lián)的數(shù)據(jù)。使用訓(xùn)練集中的15段樣本進(jìn)行HMM建模,剩下35段用作測(cè)試。結(jié)果 癲癇腦電的識(shí)別率可達(dá)90%。結(jié)論 AR模型結(jié)合HMM建模的方法對(duì)正常腦電信號(hào)和癲癇腦電的識(shí)別率較高,在腦-機(jī)接口設(shè)備的開發(fā)中有一定的應(yīng)用前景。

Objective To study the application of hidden Markov model(HMM) and autoregressive(AR) model in detection of epileptic electroencephalogram( EEG). The automated epileptic EEG recognition method can reduce the workload of doctors and reduce the influence of subjective factors of artificial identification. Methods This paper used the optimal order AR model which is based on combined information criterion (CIC) criterion to do the EEG feature extraction,and used CD-HMM as the classification tool. The clinical EEG data of Nanjing General Hospital of Nanjing Military Command (8 groups of 16 leads normal and epileptic EEG signals with a sampling frequency of 512Hz) were analyzed and identified. In the experiment,the six lead (T3,T4,FP1,FP2,C3,C4) data of each sample were selected. HMM modeling was performed using 15 samples of training concentration,and the remaining 35 sections were used for testing. Results The recognition rate of epilepsy EEG reached 92.8%. Conclusions The recognition rate is higher under the optimal order AR model and CD-HMM,which have certain application prospect in the development of brain-machine interface equipment.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]