51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于肺部PET/CT圖像不同紋理特征的K最近鄰分類(lèi)器

K-nearest neighbor classifier based on different texture features of pulmonary nodules from PET/CT images analysis

作者: 馬圓  田思佳  馮巍  梁志剛  崔春蕾  郭秀花 
單位:<p style="white-space: normal;"><span style="font-size: 12px; font-family: 宋體; color: rgb(72, 72, 72);">首都醫(yī)科大學(xué)公共衛(wèi)生學(xué)院流行病與衛(wèi)生統(tǒng)計(jì)學(xué)系(北京</span><span style="font-size: 12px; font-family: &quot;Microsoft Yahei&quot;, serif; color: rgb(72, 72, 72);">&nbsp;100069</span><span style="font-size: 12px; font-family: 宋體; color: rgb(72, 72, 72);">)</span><p style="white-space: normal;"><span style="font-size: 12px; font-family: 宋體; color: rgb(72, 72, 72);">北京市臨床流行病學(xué)重點(diǎn)實(shí)驗(yàn)室(北京</span><span style="font-size: 12px; font-family: &quot;Microsoft Yahei&quot;, serif; color: rgb(72, 72, 72);">&nbsp;100069</span><span style="font-size: 12px; font-family: 宋體; color: rgb(72, 72, 72);">)</span></p><p style="white-space: normal;"><span style="font-size: 12px; font-family: 宋體; color: rgb(72, 72, 72);">首都醫(yī)科大學(xué)宣武醫(yī)院核醫(yī)學(xué)科(北京</span><span style="font-size: 12px; font-family: &quot;Microsoft Yahei&quot;, serif; color: rgb(72, 72, 72);">&nbsp;100053</span><span style="font-size: 12px; font-family: 宋體; color: rgb(72, 72, 72);">)</span></p></p>
關(guān)鍵詞: K-最近鄰分類(lèi)器;肺癌;紋理特征;PET/CT 
分類(lèi)號(hào):<span style="font-size:12px;font-family: &#39;Times New Roman&#39;,serif">R318.04</span>
出版年·卷·期(頁(yè)碼):2018·37·1(57-61)
摘要:

Objective To reduce the dimension of the high-dimensional texture parameters of PET/CT images and to improve the accuracy of classification by building the K-nearest neighborKNN classifier based on different texture features. Methods The study retrospectively collected 52 cases with pulmonary nodules who underwent 18F -FDG PET/CT from department of Nuclear Medicine, Xuanwu Hospital Capital Medical University. Co-occurrence matrix texture features were extracted from the contourlet transformed PET/CT images. Univariate analysis was applied first to reduce dimensionality of texture features according to c value before principle components analysis. Principal components of texture features from selected texture features were extracted by PCA. We built the KNN classifier for original textures, selected textures and principle components respectively to distinguish benign and malignant nodules, comparing the efficacy of models based on the evaluation indices such as accuracy, sensitivity, specificity and AUC. Results 1344 original texture features were extracted from the region of interest of PET/CT images, from which 89 texture features were selected. Eleven principal components were extracted through the PCA procedure. The accuracy of KNN classifiers based on principal components, selected textures and original textures are 0.6140.579 and 0.263 with AUC of 0.6450.6100.515 respectively. Conclusion The KNN classifier based on the texture of principal components is the best one among the classifiers based on original texture features, the selected texture features through univariate analysis and the texture of principal components.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話(huà):010-64456508  傳真:010-64456661
電子郵箱:[email protected]