51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于雙層字典學(xué)習(xí)的低劑量CT圖像重建算法

Low dose CT image reconstruction algorithm based on thedouble layer dictionary learning method

作者: 朱雪茹  李勇明  李傳明  李志超  王健  劉燕 
單位:第三軍醫(yī)大學(xué)西南醫(yī)院放射科(重慶400038)2重慶大學(xué)通信工程學(xué)院(重慶400044)
關(guān)鍵詞: 低劑量投影;K-SVD算法;稀疏編碼;雙層字典學(xué)習(xí);CT重建 
分類號:R318.04
出版年·卷·期(頁碼):2017·36·6(584-590)
摘要:

目的 低劑量投影條件下的CT圖像重建。方法 采用雙層K-奇異值分解(K- singular value decomposition,K-SVD)字典訓(xùn)練的學(xué)習(xí)方法進(jìn)行圖像的超分辨率重建。字典學(xué)習(xí)方法中采用K-SVD算法,稀疏編碼采用正交匹配追蹤(orthogonal matching pursuit,OMP)算法。該算法首先利用訓(xùn)練庫進(jìn)行第一層字典訓(xùn)練,然后利用第一層訓(xùn)練的字典對低分辨率圖像進(jìn)行重建。進(jìn)而將重建圖像作為第二層待重建圖像的輸入,這樣使得第二層輸入圖像含有較多的高頻細(xì)節(jié)信息,因此能在重構(gòu)的過程中恢復(fù)更多的細(xì)節(jié)信息,讓高分辨率重構(gòu)圖像達(dá)到較好的效果。結(jié)果 雙層字典重建效果明顯優(yōu)于K-SVD算法,重建圖像更接近于原始高分辨率CT圖像。結(jié)論 本研究對雙層字典訓(xùn)練學(xué)習(xí)的框架進(jìn)行反迭代投影的全局優(yōu)化改進(jìn),改善了圖像的重建質(zhì)量。

Objective Reconstruction of CT image under low dose projection.Methods In this thesis,we adopt double dictionary training method based on K-singular value decomposition(K-SVD)algorithm for super resolution reconstruction of images.In the dictionary learning method,the K-SVD algorithm is adopted,and the sparse coding is orthogonal matching pursuit(OMP)algorithm.Firstly,we use training library to train the first layer dictionary,and then based on the first layer trained dictionary reconstruct low resolution images.Secondly,we put the reconstructed images as the input of the second layer images to be constructed,which make the second layer input image with more high frequency information and restore details in the process of reconstruction.Results The double-layer dictionary reconstruction is superior to the K-SVD algorithm,and the reconstructed image is closer to the original high-resolution CT image.Conclusions In this paper,the global optimization for the inverse iterative projection of the double layer dictionary training is improved,and the quality of the reconstruction image is also improved.

參考文獻(xiàn):

[1]莊天弋.CT原理與算法[M].上海:上海交通大學(xué)出版社,1992:2-93.

Zhuang TY.Principle and algorithm of CT[M].Shanghai:Shanghai Jiao Tong University Press,1992:2-93.

[2]劉楠.稀疏角度及低劑量CT圖像重建算法研究[D].廣州:南方醫(yī)科大學(xué),2011.

Liu N.Image reconstruction for sparse angular and low-dose computed tomography[D].Guangzhou:Southern Medical University,2011.

[3]宋慧慧.基于稀疏表示的圖像超分辨率重建算法研究[D].合肥:中國科學(xué)技術(shù)大學(xué),2011.

Song HH.Research for image super-resolution reconstruction algorithm based on sparse representation[D].Hefei:University of Science and Technology of China,2011.

[4]Yang JC,Wright J,Huang TS,et al.Image super-resolution as sparse representation of raw image patches[C]//IEEE Conference on Computer Vision and Pattern Recognition.Anchorage,AK:IEEE,2008:1-8.

[5]Yang JC,Wright J,Huang TS,et al.Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,19(11):2861-2873.

[6]Aharon M,Elad M,Bruckstein A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.

[7]齊宏亮.稀疏角度下的CT圖像重建迭代算法研究[D].廣州:南方醫(yī)科大學(xué),2013.

Qi HL.Research on the CT image reconstruction from sparse view data using iterative methods[D].Guangzhou:Southern Medical University,2013.

[8]魏艷新.基于字典訓(xùn)練和稀疏表示的圖像超分辨率重建算法研究[D].秦皇島:燕山大學(xué),2013.

Wei YX.Super-resolution reconstruction based on dictionary training and sparse representation[D].Qinhuangdao:Yanshan University,2013.

[9]Zeyde R,Elad M,Protter M.On single image scale-up using sparse-representations[C]//International Conference on Curves and Surfaces. Berlin:Springer,2010,6920:711-730.

[10]Freeman WT,Pasztor EC.Learning low-level vision[J].International Journal of Computer Vision,2000,40(1):25-47.

[11]Sun J,Zheng NN,Tao H,et al.Image hallucination with primal sketch priors[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Madison,Wisconsin:IEEE,2003,2:729-736.

[12]Zhang J,Zhao C,Xiong RQ,et al.Image super-resolution via dual-dictionary learning and sparse representation[C]//IEEE International Symposium on Circuits and Systems. Seoal:IEEE,2012:1688-1691.

[13]馬小薇.基于壓縮感知的OMP圖像重構(gòu)算法改進(jìn)[J].電子科技,2015,28(4):51-53.

Ma XW.Improvement of OMP image reconstruction algorithm based on compressed sensing[J].Electronic Science and Technology,2015,28(4):51-53.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]