51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于時(shí)空曲率正則化的細(xì)胞圖像序列去噪

Cell image sequence denoising based on spatio-temporal curvature regularization

作者: 何富運(yùn)  張志勝 
單位:<span style="font-family:宋體">東南大學(xué)機(jī)械工程學(xué)院(南京</span> 211189<span style="font-family:宋體">)</span>
關(guān)鍵詞: 細(xì)胞圖像序列;  去噪;  時(shí)空曲率;  正則化;  增廣拉格朗日 
分類號(hào):R318.04;TN911.73
出版年·卷·期(頁碼):2018·37·3(273-278)
摘要:

目的 顯微細(xì)胞成像系統(tǒng)獲取的圖像序列由于光照、電磁干擾等因素的影響, 不可避免地存在一定程度的噪聲, 消除噪聲得到清晰的細(xì)胞圖像是后續(xù)細(xì)胞形態(tài)特征提取和分析的首要步驟。本文引入細(xì)胞圖像序列的時(shí)域信息來構(gòu)建時(shí)空曲率正則化約束, 以實(shí)現(xiàn)細(xì)胞圖像序列的去噪處理。方法首先, 利用細(xì)胞圖像序列的空域和時(shí)域相關(guān)性, 構(gòu)建基于時(shí)空曲率正則化的圖像序列去噪模型;然后, 通過增廣拉格朗日乘子法實(shí)現(xiàn)模型的優(yōu)化求解;最后, 分別通過對(duì)疊加有不同高斯白噪聲水平的纖維母細(xì)胞和多能干細(xì)胞圖像序列進(jìn)行去噪實(shí)驗(yàn), 以驗(yàn)證去噪效果。結(jié)果 與總變分去噪法、三維閾值剪切去噪法和空間曲率正則化去噪法相比較, 基于時(shí)空曲率正則化的細(xì)胞圖像序列去噪方法應(yīng)用于2組細(xì)胞圖像序列去噪的視覺效果, 及峰值信噪比 (peak signal to noise ratio, PSNR) 和結(jié)構(gòu)相似度 (structural similarity, SSIM) 都優(yōu)于其他3種方法。結(jié)論 與其他3種去噪方法相比, 此方法更加充分利用了細(xì)胞圖像序列的時(shí)域信息, 去噪后能有效地維持圖像對(duì)比度, 振鈴效應(yīng)不明顯, 對(duì)高斯噪聲具有更好的適應(yīng)性和穩(wěn)定性, 可應(yīng)用于細(xì)胞形態(tài)變化檢測的前期處理階段。

Objective Affected by some factors, such as light, electromagnetic interference and so on, there is a certain degree of noise in the cell image sequence obtained by microscopic cell imaging system, inevitably. To get clear cell images by denoising, it is the most important for the subsequent cell morphological feature extraction and analysis steps. To eliminate the noise of cell image sequence, we introduce the time domain information of cell image sequence to build a Spatio-temporal curvature regularization constraint.Methods First, introducing the correlation of space domain and time domain in cell image sequence, we built an image sequence denoising model based on spatio-temporal curvature regularization. Then, the optimization solution of this model was solved through the augmented Lagrangian method. Finally, in order to verify the denoising effect, the denoising experiments were performed on Fibroblast and pluripotent stem cell image sequence adding with white Gaussian noise. Results Compared with total variational denoising, 3 D threshold shear denoising and spatial curvature regularization denoising, this method was superior to other three methods on the visual effect of denoising, peak signal to noise ratio (PSNR) and structural similarity (SSIM) . Conclusions Compared with three other denoising method based Spatiotemporal volume, this method makes full use of thetemporal information of cell image sequence, and can maintain the image contrast and has a better adaptability and stability with respect to Gaussian noise, and then the ringing effect is not obvious. This method can be applied to the cell morphological change detection in early processing stage.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]