51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于多特征融合的中文電子病歷命名實體識別

Named entity recognition in Chinese electronic medical records based on multi-feature integration

作者: 于楠  王普  翁壯  方麗英 
單位:<span style="font-family:宋體">北京工業(yè)大學信息學部(北京</span> 100124<span style="font-family:宋體">)</span><p><span style="font-family:宋體">城市軌道交通北京實驗室(北京</span> 100124<span style="font-family:宋體">)</span></p><p><span style="font-family:宋體">數(shù)字社區(qū)教育部工程研究中心</span> <span style="font-family:宋體">(北京</span> 100124<span style="font-family:宋體">)</span></p><p><span style="font-family:宋體">計算智能與智能系統(tǒng)北京市重點實驗室(北京</span> 100124<span style="font-family:宋體">)</span></p>
關(guān)鍵詞: 電子病歷;  多特征融合;  條件隨機場模型;  命名實體識別 
分類號:R318.04
出版年·卷·期(頁碼):2018·37·3(279-284)
摘要:

Objective For the unstructured components (medical diagnosis and patients' condition) of a tertiary hospital electronic medical records, we establish the conditional random field model with multi-feature integration, automatically identify diseases and symptoms in electronic medical record (EMR) which is described by natural language, in order to realize the structured storage of EMR, and it is beneficial for EMR information mining and statistical analysis. Methods The manually labeled corpus was divided into training set and testing set, we used NLPIR to segment the text and chose CRF + + tool for experiments. According to the data characteristics of Chinese EMR, we selected basic features and templates, determined the size of context window by contrast experiments. Then we added guide word pattern and word formation pattern, compared the effects of two advanced features on experimental result. Results When we only chose basic features, the context window was 7, the recognition performance was better; then we added advanced features, the F-measures in disease entities reached 92. 80%, the F-measures in symptom entities reached 94. 17%. Conclusions Conditionalrandom field model with multi-feature integration can achieve high recognition performance for disease entities and symptom entities in EMR. The study is of great significance to the named entity recognition in EMR.

參考文獻:

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]