51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于領(lǐng)域關(guān)聯(lián)興趣模型的個(gè)性化文獻(xiàn)推薦方法

A personalized literature recommendation method based on the domain related interest model

作者: 盛文瑾  譚紹峰  趙曉軒  陳建輝  閆健卓 
單位:北京工業(yè)大學(xué)信息學(xué)部(北京 100124)<p>首都醫(yī)科大學(xué)附屬北京友誼醫(yī)院平谷醫(yī)院(北京 101200)</p>
關(guān)鍵詞: 文獻(xiàn)推薦;  認(rèn)知科學(xué);  時(shí)間遺忘曲線;  激活擴(kuò)散理論;  用戶(hù)興趣 
分類(lèi)號(hào):R318
出版年·卷·期(頁(yè)碼):2018·37·4(392-397)
摘要:

目的 文獻(xiàn)資料是目前最重要的科研知識(shí)源, 但爆炸式增長(zhǎng)的科技文獻(xiàn)所帶來(lái)的信息過(guò)載, 使得科研人員難以快速找到真正需要的文獻(xiàn)。這在目前得到普遍關(guān)注的認(rèn)知科學(xué)領(lǐng)域尤為嚴(yán)重。為解決這一問(wèn)題, 提出一種基于領(lǐng)域關(guān)聯(lián)興趣模型的個(gè)性化文獻(xiàn)推薦方法。方法 基于對(duì)研究人員短期興趣變遷的觀察, 引入興趣遺忘曲線進(jìn)行用戶(hù)建模, 并改進(jìn)激活擴(kuò)散模型, 利用興趣間潛在的領(lǐng)域語(yǔ)義關(guān)系解決用戶(hù)興趣模型存在的數(shù)據(jù)稀疏問(wèn)題, 最后通過(guò)對(duì)比基于用戶(hù)興趣模型推薦方法與基于領(lǐng)域關(guān)聯(lián)興趣模型推薦方法的精確度與平均準(zhǔn)確率對(duì)方法的有效性進(jìn)行評(píng)估。結(jié)果 采用Pub Med文獻(xiàn)作為實(shí)驗(yàn)數(shù)據(jù), 從精確度來(lái)看, fMRIinductionnormal分別獲得0.600.800.550;從平均準(zhǔn)確度來(lái)看, 對(duì)于induction概念, 此方法能夠提供更高的精確度與召回率。結(jié)論 本方法能夠有效捕捉用戶(hù)研究興趣及其變遷, 進(jìn)而為用戶(hù)推薦內(nèi)容上更貼近其研究興趣的科技文獻(xiàn)。

Objective At present, literatures are the most important knowledge source of scientific resources. However, in the face of the information overload caused by the explosive growth of scientific literatures, it is difficult for researchers to find the literatures quickly. This is particularly acute in the field of cognitive science. In order to solve this problem, this paper proposes a personalized literature recommendation method based on the domain related interest model. Methods This method is based on the observation about the researcher's short-term interest migration and adopts a time-forgotten curve for modeling user interest. In order to solve the problem of data sparsity, this paper improves the spread activation model to find potential domain semantic relations among interests. Results We use the Pub Med literature as our experimental data. From the point of view of accuracy, f MRI, induction and normal can acquire 0.60, 0.80 and 0.550, respectively. From the point of view of average accuracy, this method can provide higher accuracy and recall rate for the concept of induction. Conclusions The proposed method can effectively capture user interests and recommend literature that more relevant to users' research interests.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話(huà):010-64456508  傳真:010-64456661
電子郵箱:[email protected]