51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于核函數(shù)極限學(xué)習(xí)機(jī)和小波包變換的EEG分類方法

EEG classification algorithm based on kernel extreme learning machine and wavelet packet transform

作者: 王麗  蘭陟  楊榮  王強(qiáng)  李宏亮 
單位:<span style="font-family:宋體">國(guó)家康復(fù)輔具研究中心(北京</span> 100176<span style="font-family:宋體">)</span>
關(guān)鍵詞: 腦-機(jī)接口;  小波包變換;  核函數(shù)極限學(xué)習(xí)機(jī);  分類方法 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2018·37·5(481-487)
摘要:

Objective The rehabilitation technology based on brain-computer interface (BCI) has become a crucial issue for the patient with motor dysfunction to achieve movement. The key technique of BCI is to quickly and accurately identify the EEG mode which is associated with motor Imagery. An adaptive algorithm of classification based on wavelet packet transform and kernel extreme learning machine (ELM) algorithm is proposed according to the characteristic of EEG such as Non-stationary and individualized differences and so on to enhance the classification accuracy of EEG. Method As the existence of the cross-banding of wavelet packet, the average energy of the best wavelet packet basis which is extract adaptively using distance criterion form the feature vector, and the kernel ELM algorithm is applied for classification. BCI competition data are used for the classification of the proposed method. The classification accuracy of different algorithms is simulated and analyzed. Results Simulation results demonstrate that the average classification accuracy is achieved to 97.6%and outperforms state-of-the-art algorithms such as ELM, back propagation (BP) and support vector machine (SVM) in the aspects of training time and classification accuracy. Conclusions The proposed method produces a high classification accuracy and is suitable for EEGclassification application.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]