51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于卷積遞歸神經(jīng)網(wǎng)絡(luò)的血壓測量模型

Blood pressure measurement model based on convolutional recurrent neural network

作者: 張佳骕  顧林躍  姜少燕 
單位:<span style="font-family:宋體">浙江好絡(luò)維醫(yī)療技術(shù)有限公司(杭州</span> 310012<span style="font-family:宋體">)</span><p><span style="font-family:宋體">青島大學醫(yī)學院附屬心血管病醫(yī)院(山東青島</span> 266071<span style="font-family:宋體">)</span></p>
關(guān)鍵詞: 血壓測量;  脈搏波;  卷積神經(jīng)網(wǎng)絡(luò);  波形特征提取;  遞歸神經(jīng)網(wǎng)絡(luò) 
分類號:R318.04
出版年·卷·期(頁碼):2018·37·5(494-501)
摘要:

目的 提出一種新型卷積遞歸神經(jīng)網(wǎng)絡(luò)血壓模型 (convolutional recurrent neural networkblood pressure, CRNN-BP) , 解決使用脈搏波波形進行血壓測量模型中存在的特征點難以提取和魯棒性較低的問題, 提高血壓模型普適性和精度。方法 該模型首先使用卷積網(wǎng)絡(luò)層自動提取脈搏波的波形特征;其次使用遞歸網(wǎng)絡(luò)層依據(jù)連續(xù)心動周期血壓變化關(guān)系對波形特征進行校正;最后使用全連接網(wǎng)絡(luò)層預(yù)測出當前的血壓值。結(jié)果 使用MIMIC數(shù)據(jù)集中人體真實生理信息對模型進行驗證, 收縮壓和舒張壓的平均絕對誤差分別為2.71 mm Hg1.41 mm Hg。模型精度相比于未使用遞歸網(wǎng)絡(luò)層的模型CNN-BP和使用全部脈搏波波形點的傳統(tǒng)血壓回歸模型更有優(yōu)勢, 且符合AAMIBHS標準。結(jié)論 CRNN-BP有效地提取了脈搏波的波形特征, 并提升了模型的精度和魯棒性。

Objective In order to solve the problem of difficult extraction of feature points and low robustness in the model of blood pressure measurement with pulse waveform, and improve the universality and accuracy of the blood pressure model, we present a new convolutional recurrent neural network-blood pressure (CRNN-BP) . Methods Firstly, we use convolutional network layer to extract the waveform features of the pulse wave automatically; Secondly, recurrent network layer is used to correct the features of waveform according to the relationship of the change of the blood pressure in the continuous cardiac cycle; Finally, full connected layer is used to predict the current blood pressure value. Results The model is validated using real human physiological information in the MIMIC data set. The mean absolute error (MAE) of systolic and diastolic blood pressure are 2.71 mm Hg and 1.41 mm Hg, respectively. Other than the accuracy of CRNN-BP is consistent with the standards of AAMI and BHS, it's superior to CNN-BP which does not use the recurrent network layer and traditional blood pressure regression models which use all pulse wave shape points.Conclusions CRNN-BP effectively extracts the waveform features of pulse wave and improves the accuracy and robustness of the model.

參考文獻:

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]