51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
腫瘤熱療無(wú)損測(cè)溫方法的研究進(jìn)展

Advances in non-invasive temperature measurement methods for hyperthermia

作者: 嵇敏潔  印佳  楊悅  韓佳薇  吳小玲 
單位:南京醫(yī)科大學(xué)生物醫(yī)學(xué)工程與信息學(xué)院(南京 211166)
關(guān)鍵詞: 腫瘤熱療;  溫度敏感性;  無(wú)損測(cè)溫;  精確性;  熱劑量 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2019·38·1(96-101)
摘要:

腫瘤熱療(hyperthermia)是利用腫瘤組織對(duì)溫度敏感性高于正常組織的性質(zhì),即人體正常細(xì)胞在42.5~43℃下不會(huì)受到損傷,但大部分腫瘤細(xì)胞在該溫度下會(huì)被誘導(dǎo)進(jìn)入凋亡過(guò)程。臨床上應(yīng)用超聲、微波或紅外等作為加熱源,加熱并殺死腫瘤組織而使得正常組織基本不受損傷。但是對(duì)于如何精確測(cè)量腫瘤熱療的溫度從而控制熱療劑量仍然是一個(gè)難題。本文綜述了目前腫瘤熱療過(guò)程中電阻抗斷層成像(ectrical impedance tomograph,EIT)測(cè)溫、紅外熱圖引導(dǎo)技術(shù)、微波輻射測(cè)溫法、超聲無(wú)損測(cè)溫、磁共振成像測(cè)溫(magnetic resonance imaging,MRI)等無(wú)損測(cè)溫方法及其研究現(xiàn)狀,展望了如何有效精確測(cè)量腫瘤熱療時(shí)的溫度,為控制腫瘤熱療的熱劑量提供參考,以期在不傷害正常組織的前提下,使腫瘤組織產(chǎn)生不可逆的損傷。

Hyperthermia is the use of tumor tissue that is more sensitive to temperature than normal tissues . Human normal cells can tolerate 42-43°C for long periods of time without damage, while most tumor cells will be induced into the apoptotic process at 42°C. Ultrasound, microwave or infrared is used as the heating source in clinical practice to heat and kill tumor tissue, so that normal tissue was not damaged. However, it is still difficult to accurately measure the temperature of tumor hyperthermia and control the dose of hyperthermia. This article reviews the methods and research status of non-invasive temperature measurement in tumor hyperthermia, such as electrical impedance tomography (EIT) temperature measurement, infrared thermal image, microwave radiation temperature measurement, ultrasonic non-destructive temperature measurement, magnetic resonance imaging (MRI), etc, forecasts how the temperature measurement method can effectively and accurately measure the temperature during hyperthermia, and provide reference for controlling the thermal dose of tumor hyperthermia, so as to cause irreversible damage to tumor tissue without harming normal tissues.

參考文獻(xiàn):

 [1] Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia[J]. Critical Reviews in Oncology Hematology, 2002,43(1):33-56.

 [2] Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology.[J]. Seminars in Radiation Oncology, 2004,14(3):198-206.

 [3] Ressel A, Weiss C, Feyerabend T. Tumor oxygenation after radiotherapy, chemotherapy, and/or hyperthermia predicts tumor free survival.[J]. International Journal of Radiation Oncology, Biology, Physics, 2001,49(4):1119-1125.

 [4] Henderson R P, Webster J G. An impedance camera for spatially specific measurements of the thorax.[J]. IEEE transactions on bio-medical engineering, 1978,25(3):250-254.

 [5] 蔡華, 尤富生, 史學(xué)濤, 等. 離體豬肝組織溫度的電阻抗成像監(jiān)測(cè)研究[J]. 醫(yī)療衛(wèi)生裝備, 2012,33(2):5-7.

Cai H, You FS, Shi XT, et al. Monitoring of electricalimpedance tomography with temperature in fresh pig liver in vitro[J]. Journal of Medical and Health Equipment, 2012,33(2):5-7.

[6] Guo GP, Su HD, Ding HP, et al. Noninvasive temperature monitoring for high intensity focused ultrasound therapy based on  electrical impedance tomography[J]. Acta Physica Sinica, 2017, 66:12-16..

[7] 蔡華. 肝臟組織的電阻率-溫度特性及電阻抗成像監(jiān)測(cè)的研究[D]. 西安:第四軍醫(yī)大學(xué), 2011.

Cai H. Research on Measurement the resistivity-temperature properties of liver tissue and monitoring of electrical impedance tomography[D]. Xian:Fourth Military Medical Unversity, 2011.

 [8] 張城. 紅外熱成像技術(shù)原理及應(yīng)用前景[J]. 數(shù)字通信世界, 2017,(2):126-127

Zhang C. Principle and Application Prospect of Infrared Thermal Imaging Technology[J]. Digital Communication World, 2017,(2):126-127

[9] Rodrigues HF, Capistarano G, Mello FM, et al. Precise determination of the heat delivery during in vivo magnetic nanoparticle hyperthermia with infrared thermography[J]. Physics in Medicine & Biology, 2017,62(10):4062-4082.

[10] 劉靜, 鄧中山. 腫瘤冷凍治療與高溫?zé)岑熤械募t外熱圖引導(dǎo)技術(shù)[C]// 中國(guó)儀器儀表學(xué)會(huì).中國(guó)儀器儀表學(xué)會(huì)醫(yī)療儀器分會(huì)第四次全國(guó)會(huì)員代表大會(huì)暨2009年學(xué)術(shù)年會(huì)論文集.北京:中國(guó)儀器儀表學(xué)會(huì), 2009.

[11] Rodrigues HF, Mello FM, Branquinho LC, et al. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.[J]. International Journal of Hyperthermia the Official Journal of European Society for Hyperthermic Oncology North American Hyperthermia Group, 2013, 29(8):752-767.

[12]  Jiao LZ, Dong DM, Zhao XD, et al. Compensation method for the influence of angle of view on animal temperature measurement using thermal imaging camera combined with depth image.[J]. Journal of Thermal Biology, 2016, 62(Pt A):15-19.

[13] Ma M,Zhang Y,Gu N. Estimation the tumor temperature in magnetic nanoparticle hyperthermia by infrared thermography: phantom and numerical studies[J].Journal of Thermal Biology,2018,76:89-94

[14] Enander B, Larson G. Microwave radiometric measurements of the temperatureinside a body[J]. Electronics Letters.,1974, 10(15): 317.

[15] 皮釗逢. 用于人體溫度測(cè)量微波輻射計(jì)天線的研究[D]. 武漢:華中科技大學(xué),2015.

Pi ZF. [D].Research on microwave radiometer antenna for human body temperature measurement Wuhan[D]:Huazhong University of Science and Technology, 2015.

[16] 何帆. 微波無(wú)損測(cè)量人體內(nèi)部溫度的反演方法研究[D]. 武漢:華中科技大學(xué), 2015.

He Fan. Study of Nondestructive retrieval method for the measurement of human internal temperature by microwave[D]. Wuhan:Huazhong University of Science and Technology, 2015.

[17]  Levick A, Land D, Hand J. Validation of microwave radiometry for measuring the internal temperature profile of human tissue[J]. Measurement Science & Technology, 2011, 22(22):065801.

[18] Momenroodaki P, Haines W, Fromandi M, et al. Noninvasive internal body temperature tracking with near-field microwave radiometry[J]. IEEE Transactions on Microwave Theory & Techniques, 2017,65 (99):1-11.

[19] Sehgal C M, Brown G M, Bahn R C, et al. Measurement and use of acoustic nonlinearity and sound speed to estimate composition of excised livers[J]. Ultrasound in Medicine & Biology, 1986, 12(11):865-874.

[20]  Jovanovic I, Hormati A, Littrup P, et al. Temperature monitoring during tissue freezing using ultrasound speed measurements[C/OL]. 2017-01-23.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.2803&rep=rep1&type=pdf.

[21] 熊六林, 錢祖文, 于晉生,等. 超聲反演法無(wú)創(chuàng)測(cè)溫實(shí)驗(yàn)研究[J]. 中國(guó)超聲醫(yī)學(xué)雜志, 2008, 24(1):17-19.

Xiong Liulin,Qian Zuwen,Yu Jinsheng,et a1.Non-invasive temperature measurement using acoustic—invasion method:

experimental study[J].Chinese Journal of Ultrasound Medical, 2008, 24(1):17一19

[22] Atri M, Gertner MR, Haider MA, et al. Contrast-enhanced ultrasonography for real-time monitoring of interstitial laser thermal therapy in the focal treatment of prostate cancer.[J]. Canadian Urological Association Journal, 2009, 3(2):125-130.

[23] Engrand C, Laux D, Ferrandis J Y, et al. Velocimetric ultrasound thermometry applied to myocardium protection monitoring[J]. Ultrasonics, 2018, 87: 1-6.

[24] Ebbini ES, Simon C, Liu D. Real-time ultrasound thermography and thermometry (life sciences)[J]. IEEE Signal Processing Magazine, 2018, 35(2):166-174.

[25]  Iseki Y, Anan D, Saito T, et al. Non-Invasive Measurement of Temperature Distributions During Hyperthermia Treatments using Ultrasound B-mode Images[J]. Thermal Medicine, 2016, 32(4):17-30.

[26] 盛磊, 周著黃, 吳水才, 等. 熱消融組織B超圖像紋理特征參數(shù)溫度相關(guān)性[J]. 北京工業(yè)大學(xué)學(xué)報(bào), 2013(8):1275-1280.

Sheng L,Zhou ZH,Wu SC, et al. Correlations between B-modeultrasound imag etexture features and tissue temperature in hyperthermia[J]. Journal of Beijing University of Technology, 2013(8):1275-1280.

[27]  Yang C, Zhu H, Wu S, et al. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation [J]. Journal of Ultrasound in Medicine, 2010, 29(12): 1787-1799.

[28]  Lai CY, Kruse DE, Caskey CF, et al. Noninvasive thermometry assisted by a dual function ultrasound transducer for mild hyperthermia[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2010, 57(12):2671.

[29] 肖達(dá), 王潤(rùn)民, 鄒孝,等. 基于Gabor變換和灰度梯度共生矩陣的超聲無(wú)損測(cè)溫研究[J]. 傳感技術(shù)學(xué)報(bào), 2017, 30(11):1684-1688.

Xiao D, Wang RM, Zou X, et al. A noninvasive temperature measurement based on gabor transform and gray level gradient co-occurrence matrix using ultrasound[J]. Chinese Journal of Sensors and Actuators, 2017, 30(11):1684-1688. 

[30] Pinker K , Moy L , Sutton EJ , et al. Diffusion-weighted imaging with apparent diffusion coefficient mapping for breast cancer detection as a stand-alone parameter: comparison with dynamic contrast-enhanced and multiparametric magnetic resonance imaging[J]. Investigative Radiology, 2018, 53.

[31] Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping using water proton chemical shift.[J]. Magnetic Resonance in Medicine, 2010,34(6):814-823.

[32] De PJ, De WC, De DY, et al. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle[J]. Magnetic Resonance in Medicine, 2010,33(1):74-81.

[33] Dan B, Basser PJ. Towards clinically feasible relaxation-diffusion correlation MRI using MADCO[J]. Microporous and Mesoporous Materials, 2018, 269(93-96):1387-1811.

[34] Hue YK, Guimaraes AR, Cohen O, et al. Magnetic Resonance Mediated Radiofrequency Ablation.[J]. IEEE Transactions on Medical Imaging, 2018, 37(2) :417-427

[35] Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy[J]. Journal of Magnetic Resonance Imaging, 2000,12(4):525-533.

[36] Jonathan SV, Grissom WA. Volumetric MRI thermometry using a three‐dimensional stack‐of‐stars echo‐planar imaging pulse sequence[J]. Magnetic Resonance in Medicine, 2018, 79(4) :2003-2013.

[37] Bever J T D, Odeen H, Hofstetter L W, et al. Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition[J]. Magnetic Resonance in Medicine, 2018,79(3) :1515-1524.

[38] 劉力坤, 敖碧鳳, 丁文金,等. 磁性納米粒子的性狀及其在腫瘤磁靶向熱療中的應(yīng)用與挑戰(zhàn)[J]. 國(guó)際腫瘤學(xué)雜志, 2015, 42(9):685.

Liu LK,Ao BF,Ding WJ, et al.Properties of magnetic nanoparticles and its appficafion in tumor magnetic targeting hyperthermia and challenges[J]. Journal of International Oncology, 2015, 42(9):685.

[39] Weaver JB, Rauwerdink AM, Hansen EW. Magnetic nanoparticle temperature estimation.[J]. Medical Physics, 2009, 36(5):1822.

[40] Rauwerdink AM, Hansen EW, Weaver JB. Nanoparticle temperature estimation in combined ac and dc magnetic fields[J]. Physics in Medicine and Biology, 2009,54(19):L51-L55.

[41] Reeves DB, Weaver JB. Simulations of magnetic nanoparticle Brownian motion[J]. Journal of Applied Physics, 2012,112(12):124311.

[42] Boroon MP, Ayani MB, Bazaz SR. Estimation of the optimum number and location of nanoparticle injections and the specific loss power for ideal hyperthermia[J]. Journal of Thermal Biology, 2018, 72:127.

[43] 張亞萍, 李康, 張秀敏. 磁流體腫瘤熱療中超聲無(wú)損測(cè)溫技術(shù)的研究進(jìn)展[J]. 北京生物醫(yī)學(xué)工程, 2016, 35(3):308-313.

Zhang Yaping,Li Kang,Zhang Xiumin. Advances in noninvasive ultrasound monitoring of magnetic fluid hyperthermia for tumors[J]. Beijing Biomedical Engineering, 2016, 35(3):308-313

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]