51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于鎖相值和圖論的腦功能網(wǎng)絡(luò)特征提取方法

Applying phase locking value and graph theory for feature extraction of brain functional network

作者: 李明愛  南琳  孫炎珺 
單位:北京工業(yè)大學(xué)信息學(xué)部(北京 100124)<p>計算智能與智能系統(tǒng)北京市重點實驗室(北京 100124)</p>
關(guān)鍵詞: 運動想象腦電信號;  腦功能網(wǎng)絡(luò);  圖論;  特征提取;  鎖相值 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·1(15-21)
摘要:

目的 為了研究大腦運動想象時腦功能網(wǎng)絡(luò)的狀態(tài)變化,并區(qū)分運動想象任務(wù),本文提出一種基于鎖相值和圖論的腦功能網(wǎng)絡(luò)特征提取方法。方法 獲取Mu節(jié)律和Beta節(jié)律的運動想象腦電信號(motor imagery electroencephalography, MI-EEG),計算任意兩導(dǎo)相同節(jié)律MI-EEG之間的鎖相值,分別構(gòu)建兩個節(jié)律的腦功能網(wǎng)絡(luò),并提取6種全局網(wǎng)絡(luò)特征參數(shù),對其歸一化處理后進行串行融合獲得特征向量。最后以支持向量機作為分類器,采用10折交叉驗證法,在BCI Competition III Data Sets IIIa數(shù)據(jù)集上對兩種運動想象任務(wù)進行分類。結(jié)果 相比于其他腦網(wǎng)絡(luò)特征提取方法,本文方法獲得了較高的識別率,最高識別率和平均識別率分別達到100.00%和83.33%。結(jié)論 從腦功能網(wǎng)絡(luò)的角度,通過構(gòu)建Mu節(jié)律和Beta節(jié)律兩個運動節(jié)律MI-EEG的腦功能網(wǎng)絡(luò),提取多個反映大腦網(wǎng)絡(luò)整體信息的特征,相對于構(gòu)建單一運動節(jié)律MI-EEG的腦功能網(wǎng)絡(luò),提取單個網(wǎng)絡(luò)特征參數(shù),能夠有效改善運動想象任務(wù)的識別效果,為MI-EEG信號的特征提取方法提供了一種新的思路。

Objective In order to study the state changes of brain functional network caused by motor imagery and distinguish the motor imagery tasks, a feature extraction method of brain functional network is proposed by using phase locking value and graph theory. Methods The motor imagery electroencephalography (MI-EEG) signals corresponding to Mu rhythm and Beta rhythm are obtained, and the phase locking values between any two channels are calculated on the same rhythm MI-EEG. Then, two brain functional networks of Mu rhythm and Beta rhythm are constructed respectively, and six global network parameters are extracted. After normalizing, these parameters are serially fused to construct feature vectors. Finally, support vector machine (SVM) is used as a classifier to verify the effectiveness of this method by using 10-fold cross validation on the public dataset: BCI Competition III Data Sets IIIa. Results Compared with other feature extraction methods of brain network, this proposed method achieves higher recognition rates, and the highest recognition rate and average recognition rate are 100.00% and 83.33%, respectively. Conclusions From the perspective of brain functional network, by constructing the brain functional networks of Mu rhythm and Beta rhythm MI-EEG, multiple network parameters that reflect the whole information of brain network are extracted. Compared with the method which builds one brain functional network using a single rhythm MI-EEG and extracts individual network parameter, this method can effectively improve the recognition effect of motor imagery tasks, and provides a new idea for the feature extraction method of MI-EEG signals.

參考文獻:

[1] Milton J, Small SL, Solodkin A. Imaging motor imagery: methodological issues related to expertise[J]. Methods, 2008, 45(4):336-341.

[2] Holmes P, Calmels C. A neuroscientific review of imagery and observation use in sport[J]. Journal of Motor Behavior, 2010, 40(5):433-445.

[3] 劉鐵軍, 徐鵬, 余茜,等. 運動想象的腦機制及其在運動功能康復(fù)中應(yīng)用的研究進展[J].生物化學(xué)與生物物理進展, 2011, 38( 4):299-304. 

Liu TJ, Xu P,Yu Q, et al. The research and progress in the mechanism of motor imagery and its application in motor rehabilitation[J]. Progress in Biochemistry and Biophysics, 2011,38(4):299-304.

[4] Cona F, Zavaglia M, Astolfi L, et al. Changes in EEG power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task[J]. Computational Intelligence & Neuroscience, 2009:279515.

[5] 施錦河, 沈繼忠, 王攀. 四類運動想象腦電信號特征提取與分類算法[J]. 浙江大學(xué)學(xué)報(工學(xué)版), 2012, 46(2):338-344. 

Shi JH, Shen JZ, Wang P. Feature extraction and classification of four-class motor imagery EEG data[J]. Journal of Zhejiang University (Engineering Science), 2012,46(2):338-344.

[6] Pfurtscheller G. Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest[J]. Electroencephalography & Clinical Neurophysiology, 1992, 83(1):62-69.

[7] Gong A, Liu J, Chen S, et al. Time–frequency cross mutual information analysis of the brain functional networks underlying multiclass motor imagery[J]. Journal of Motor Behavior, 2017,50(3):254-267.

[8] Ghosh P, Mazumder A, Bhattacharyya S, et al. Functional connectivity analysis of motor imagery EEG signal for brain-computer interfacing application[C]//2015 7th International IEEE/EMBS Conference on Neural Engineering. Montpellier, France: IEEE Press, 2015:210-213.

[9] Filho CAS, Attux R, Castellano G. Can graph metrics be used for EEG-BCIs based on hand motor imagery?[J]. Biomedical Signal Processing and Control, 2018, 40:359-365.

[10] Gonuguntla V, Wang Y, Veluvolu KC. Event-related functional network identification: application to eeg classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(7):1284-1294.

[11] Santamaria L, James C. Use of graph metrics to classify motor imagery based BCI[C]//2016 International Conference for Students on Applied Engineering. IEEE Press, 2017:469-474. 

[12] Shrestha B, Vlachos I, Adkinson J A, et al. Distinguishing Motor Imagery from Motor Movement Using Phase Locking Value and Eigenvector Centrality[C]//2016 32nd Southern Biomedical Engineering Conference. Shreveport, LA, USA: IEEE Press, 2016:107-108. 

[13] Quiroga RQ, Kraskov A, Kreuz T, et al. Performance of different synchronization measures in real data: a case study on electroencephalographic signals[J]. Physical Review E, 2002, 65(4):041903.

[14] 汪小帆, 李翔, 陳關(guān)榮. 網(wǎng)絡(luò)科學(xué)導(dǎo)論[M]. 北京: 高等教育出版社, 2012.

Wang XF, Li X, Chen GR. Network science: an introduction[M]. Beijing: Higher Education Press, 2012.

[15] Tang J, Scellato S, Musolesi M, et al. Small-world behavior in time-varying graphs[J]. Physical Review E: Statistical Nonlinear, and Soft Matter Physics, 2010, 81(5 Pt 2):055101.

[16] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations[J]. NeuroImage, 2010, 52(3):1059-1069.

[17] Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain[J]. Nonlinear Biomedical Physics, 2007, 1(1):3.

[18] 佘青山, 昌鳳玲, 范影樂,等. 基于鄰接矩陣分解的腦電特征提取與分類方法[J]. 傳感技術(shù)學(xué)報, 2012, 25(9):1204-1209.

She QS, Chang FL,Fan YL, et al. Feature Extraction and Classification of EEG Based on Adjacent Matrix Decomposition[J]. Chinese Journal of Sensors and Actuator, 2012, 25(9):1204-1209.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]