51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于高級控制策略的腦-機接口控制機械臂系統(tǒng)

Brain-computer interface controlled robotic arm system based on high-level control strategy

作者: 李紅衛(wèi)  陳小剛 
單位:中國人民解放軍第161醫(yī)院醫(yī)學工程科(湖北武漢 430010)<p>中國醫(yī)學科學院北京協(xié)和醫(yī)學院生物醫(yī)學工程研究所(天津 300192)</p><p></p>
關鍵詞: 高級控制策略;  穩(wěn)態(tài)視覺誘發(fā)電位;  腦-機接口;  機械臂 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·1(36-41)
摘要:

目的為了增加腦-機接口控制機械臂完成諸如抓取和放置的復雜操作的能力,本文設計與實現(xiàn)了一套新穎的基于腦-機接口控制的機械臂系統(tǒng)。方法 該系統(tǒng)主要包括計算機視覺、穩(wěn)態(tài)視覺誘發(fā)電位腦-機接口和機械臂。計算機視覺用于識別工作區(qū)物體的形狀和位置,低頻穩(wěn)態(tài)視覺誘發(fā)電位腦-機接口允許用戶選擇需要被操作的物體,機械臂則自主完成抓取和放置操作。為了驗證機械臂系統(tǒng),選取14名健康受試者,受試者均參加了離線試驗,12名受試者參與在線試驗。結果12名健康受試者的在線結果表明,所構建的系統(tǒng)能夠在6.75 s內從4個可供選擇的指令中輸出一個命令,且獲得95.24%的平均分類正確率。結論這些結果表明穩(wěn)態(tài)視覺誘發(fā)電位的腦-機接口能夠為機械臂提供精確、有效的高級控制。

ObjectiveTo increase the ability of brain-computer interface to control a robotic arm to complete complex operations such as pick and place. This paper is designed and realized a novel brain-computer interface (BCI) controlled robotic arm. MethodsThe proposed system included computer vision, steady-state visual evoked potential (SSVEP)-based BCI, robotic arm. The computer vision could identify and locate objects in the workspace, the low-frequency SSVEP-based BCI allowed the user to select the objects that need to be operated. The robotic arm could autonomously pick and place the selected object. In order to verify the robotic arm system, 14 healthy subjects were selected and all of them participated in the off-line test,12 subjects participated in the on-line test.Results Online results involving twelve subjects indicated that a command for the propose system could be selected from four possible choices in 6.75 s with 95.24% accuracy.Conclusion These results demonstrate an SSVEP-based BCI can provide accurate and efficient high-level control of a robotic arm.

參考文獻:

[1] Meng J, Zhang S, Bekyo A, et al. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks [J]. Scientific Reports, 2016, 6: 38565.

[2] Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002, 113: 767-791.

[3] Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface [J]. Proceedings ofthe National Academy of Sciences of the United States ofAmerica, 2015, 112(44): E6058-E6067.

[4] Allison BZ, Brunner C, Altst?tter C, et al. A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control [J].Journal of Neuroscience Methods, 2012, 209(2):299-307.

[5] Chen X, Zhao B, Wang Y, et al. Control of a 7-DOF robotic arm system with an SSVEP-based BCI [J].International Journal of Neural Systems, 2018, 28(8): 1850018.

[6] Novak D, Sigrist R, Gerig NJ, et al. Benchmarking brain-computer interfaces outside the laboratory: the Cybathlon 2016 [J].Frontiers in Neuroscience, 2018, 11:756.

[7] 陳小剛,王毅軍. 基于腦電的無創(chuàng)腦機接口研究進展[J]. 科技導報,2018,36(12): 22-30.

Chen X, Wang Y. A review of non-invasive electroencephalogram-based brain computer interfaces [J]. Science & Technology Review, 2018,36(12): 22-30.

[8] Yu T, Xiao J, Wang F, et al. Enhanced motor imagery training using a hybrid BCI with feedback [J].IEEE Transactions on Biomedical Engineering, 2015, 62(7):1706-1717.

[9] Zhang Y, Nam CS, Zhou G, et al. Temporally constrained sparse group spatial patterns for motor imagery BCI [J].IEEE Transactions on Cybernetics, 2018,6:1-11.

[10] Jin J, Zhang H, Daly I, et al. An improved P300 pattern in BCI to catch user's attention [J]. Journal of Neural Engineering, 2017, 14(3):036001.

[11] Xu M, Qi H, Ma L, et al. Channel selection based on phase measurement in P300-based brain-computer interface [J]. PLos One, 2013, 8(4):e60608.

[12] Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface [J].Journal of Neural Engineering, 2015, 12(4):046008.

[13] Chen X, Chen Z, Gao S, et al. A high-ITR SSVEP based BCI speller [J]. Brain-Computer Interfaces, 2014, 1: 181-191.

[14] Hortal E, Ianez E, Ubeda A, et al. Combining a brain-machine interface and an electrooculography interface to perform pick and place tasks with a robotic arm [J].Robotics and Autonomous Systems, 2015, 72: 181-188.

[15] Bi L, Fan X A, Liu Y. EEG-based brain-controlled mobile robots: a survey [J]. IEEE Transactions on Human-Machine Systems, 2013, 43 (2): 161-176.

[16] Bin G, Gao X, Yan Z, et al. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method [J].Journal of Neural Engineering, 2009, 6(4):046002.

[17] Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis [J].IEEE Transactions on Biomedical Engineering, 2018, 65(1):104-112.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]