51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于2D-3D配準的術(shù)中腓骨旋轉(zhuǎn)不良檢測方法

Method of detecting intraoperative fibular malrotation based on 2D-3D registration technology

作者: 李言  武王將  楊博鑫  丁云鶴  王巨鵬  孫振輝  楊智 
單位:首都醫(yī)科大學 生物醫(yī)學工程學院(北京 100069)<p>臨床生物力學應用基礎(chǔ)研究北京市重點實驗室(北京 100069)</p><p>首都醫(yī)科大學附屬北京安貞醫(yī)院介入診療科(北京 100029)</p><p>天津市西青醫(yī)院骨科(天津 300380)</p><p>天津市天津醫(yī)院骨科(天津 300211)</p>
關(guān)鍵詞: 踝關(guān)節(jié)骨折;  腓骨旋轉(zhuǎn)不良;  2D-3D配準;  優(yōu)化算法;  醫(yī)學圖像手術(shù)導航 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·1(52-58)
摘要:

目的 腓骨旋轉(zhuǎn)不良是造成術(shù)后踝關(guān)節(jié)功能不全的主要原因之一。通常檢測腓骨旋轉(zhuǎn)不良的方法是對術(shù)中踝關(guān)節(jié)2D X射線影像做目視評估,但主觀判斷往往導致結(jié)果誤差較大;目前公認的準確檢測腓骨旋轉(zhuǎn)不良的方法需借助術(shù)后3D CT數(shù)據(jù),但會為患者引入較大的輻射量。為此,本文提出了一種基于2D-3D配準技術(shù)準確識別術(shù)中腓骨旋轉(zhuǎn)不良的低劑量、低成本的精準復位腓骨的可行方法,即將術(shù)中拍攝的C臂圖像和術(shù)前拍攝的CT數(shù)據(jù)配準。方法 本文利用模擬數(shù)據(jù)仿真了術(shù)中識別腓骨旋轉(zhuǎn)不良的過程,以此驗證所提方法的可行性。研究對象為單一腓骨CT數(shù)據(jù),初始位置定義為參考位,然后借助Mimics軟件對其做不同程度的旋轉(zhuǎn)變換,生成12組腓骨旋轉(zhuǎn)畸形測試位的CT數(shù)據(jù),模擬術(shù)中腓骨的不同姿態(tài),包括6組腓骨內(nèi)旋和6組腓骨外旋。測試位腓骨術(shù)中C臂圖像由投影仿真程序生成。通過將術(shù)中C臂圖像和參考位CT數(shù)據(jù)做2D-3D配準來識別這12組測試位相對于參考位的旋轉(zhuǎn)不良程度。得到的結(jié)果和金標準比對,從而評估2D-3D配準的準確性;其中,金標準為參考位和12組測試位的3D-3D配準結(jié)果。另外,因為與投影軸平行方向檢測位移不敏感,故本文用兩幅正交位投影的配準結(jié)果做補償。結(jié)果 10次測試12組數(shù)據(jù)配準結(jié)果在繞x軸、y軸和z軸旋轉(zhuǎn)的平均角度(及沿三個方向的平均位移)誤差分別為1.19° (0.56 mm), 0.72° (0.84 mm) 和 0.81° (0.65 mm);標準差依次為0.43° (0.38 mm), 0.51° (0.47 mm)和0.58° (0.5 mm);最大誤差分別是2.13° (1.76 mm)、2.74° (1.90 mm) 和 2.10° (2.16 mm)。結(jié)論 2D-3D配準方法可為臨床腓骨復位提供精度更高的監(jiān)控工具,其誤差遠小于目前10°旋轉(zhuǎn)的目測誤差。相比于術(shù)前CT做手術(shù)規(guī)劃,術(shù)后CT做手術(shù)評估,本文方法借助術(shù)前CT和術(shù)中C臂圖像不僅可達到準確評估的目的,而且可實現(xiàn)術(shù)中動態(tài)評估,故其輻射劑量更低,患者醫(yī)療成本更低,治療更及時、更有效。

Objectives Distal fibular malrotation is one of the main reasons leading to poor functional outcomes in ankles. The general method of detecting fibular malrotation is to evaluate intraoperative 2D X-ray images based on surgeons’ experiences. This subjective judgment tends to bring bigger errors. Whereas, accurate estimation of fibular malrotation requires postoperative 3D CT scans. It will bring in extra radiational doses to patients. This paper proposes to better detect the intraoperative distal fibular malrotation using 2D-3D registration technology with low-doses and low-costs, which registers intraoperative fluoroscopies in 2D to the preoperative CT volume. Methods In order to verify the proposed method’s feasibility, we studied the procedure of identifying the fibular malrotation in intra-operation scenario using  simulation data. We took a cadaver fibula bone CT data as a research subject. Its initial position was defined as the reference position. From the CT data, 12 intraoperative volumetric datasets were simulated with internal rotation (IR) and external rotation (ER) gestures in Mimics? software.  2D C-arm images at 12 gestures were also simulated by forward projection. Fibular rotations at 12 gestures were estimated using the suggested 2D-3D registration method, the registration results’ accuracy was compared with gold standards. The gold standards were from the 3D-3D registration between the 3D simulation data and the reference 3D data. To minimize the large errors in insensitive axis, two orthogonal fluoroscopies were used in 2D-3D registration. Results The average registration errors of 10 tests in rotation angles (and translations) at 12 gestures in x-axis, y-axis and z-axis were 1.19° (0.56 mm), 0.72° (0.84 mm) and 0.81° (0.65 mm), respectively. The corresponding standard deviations were 0.43° (0.38 mm), 0.51° (0.47 mm) and 0.58° (0.50 mm). Overall, the maximum errors in cartesian coordinate system were 2.13° (1.76 mm), 2.74° (1.90 mm) and 2.10° (2.16 mm) respectively. Conclusions The proposed 2D-3D registration method opens a possibility to greatly improve the clinical outcomes for the fibular malrotation correction compared to visual evaluation accuracy of internal rotation errors less than 10° and external ones less than 5°. Compared with the usual procedure of using preoperative CT scans for surgical plan and postoperative CT scans for surgical evaluation, not only can the proposed method achieve the accurate evaluation and low dose purposes, but also intra-operative assessment. Therefore, our method is a low dose approach that can be more effective and save patient’s medical costs.

參考文獻:

[1] Ward KA, Soames RW. Contact patterns at the tarsal joints[J]. Clinical Biomechanics, 1997, 12(7-8): 496-507.

[2] Wang X, Chang SM, Yu GR, et al. Clinical value of the Ottawa ankle rules for diagnosis of fractures in acute ankle injuries[J]. Plos One, 2013, 8(4): e63228.

[3] Ian W, Scott Y, Jill F. Emergency department evaluation and management of foot and ankle pain[J]. Emergency Medicine Clinics of North America, 2015, 33(2): 363-396.

[4] Flynn JM, Rio RD, Pizá PA. Closed ankle fractures in the diabetic patient[J]. Foot & Ankle International, 2000, 21(4): 311-319.

[5] Wensen RJAV, Bekerom MPJVD, Marti RK, et al. Reconstructive osteotomy of fibular malunion: review of the literature[J]. Strategies in Trauma & Limb Reconstruction, 2011, 6(2): 51-57.

[6] 阮志勇, 黃金亮, 羅從風. 踝關(guān)節(jié)腓骨旋轉(zhuǎn)角測量:術(shù)中判斷下脛腓骨聯(lián)合復位的成功率[J]. 中國組織工程研究, 2013, 17(26): 4865-4871.

[7] Stroh DA, DeFontes K, Paez A, et al. Distal fibular malrotation and lateral ankle contact characteristics[J/OL]. (2017-09-30).http://dx.doi.org/10.1016/j.fas.2017.09.001.

[8] Meir M, Utku K, Amir M, et al. A method for detection of lateral malleolar malrotation using conventional fluoroscopy[J]. Journal of Orthopaedic Trauma, 2013, 27(12): e281.

[9] Dagnino G, Georgilas I, Morad S, et al. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery[J]. International Journal of Computer Assisted Radiology & Surgery, 2017, 12(8): 1383-1397.

[10] Chang CJ, Lin GL, Tse A, et al. Registration of 2d c-arm and 3d ct images for a c-arm image-assisted navigation system for spinal surgery[J/OL]. (2015-5-28). http://dx.doi.org/10.1155/2015/478062.

[11] Weigelt L, Furnstahl P, Hirsiger S, et al. Three-Dimensional Correction of Complex Ankle Deformities With Computer-Assisted Planning and Patient-Specific Surgical Guides[J]. Journal of Foot & Ankle Surgery, 2017, 56(6): 1158-1164.

[12] Shalaby A, Farag AA, Ross A, et al. 2D-3D registration of human ankle using X-ray and CT images[C]// 2012 Cairo International Biomedical Engineering Conference (CIBEC). Giza, Egypt: Institute of Electrical and Electronics Engineers,2013: 23-26.

[13] Alam F, Rahman SU, Ullah S, et al. Medical image registration in image guided surgery: Issues, challenges and research opportunities[J]. Biocybernetics & Biomedical Engineering, 2018, 38(1):71-89.

[14] Hossain MM, Alam MJ, Pickering MR, et al. Repeat validation of a method to measure in vivo three dimensional hip kinematics using computed tomography and fluoroscopy[C]//2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, IL: Institute of Electrical and Electronics Engineers, 2014:6044-6047.

[15] Bruno DM, Samit B. Distance-driven projection and backprojection in three dimensions[J]. Physics in Medicine & Biology, 2004, 49(11): 2463-2475.

[16] Otake Y, Armand M, Armiger RS, et al. Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration[J]. IEEE Transactions on Medical Imaging, 2012, 31(4): 948-962.

[17] Pdl F, Banks SA. Automated registration of 3-d knee implant models to fluoroscopic images using lipschitzian optimization[J]. IEEE Transactions on Medical Imaging, 2018, 37(1): 326.

[18] 王雷. 影像導航手術(shù)中2D/3D圖像配準[D].長春:中國科學院研究生院長春光學精密機械與物理研究所, 2015.

     Wang L. 2D/3D image registration in image -guided navigation surgery[D].Changchun:Changchun Institute of Optics,Fine Mehcanics and Physics,2015.

[19] Duménil A, Kaladji A, Castro M, et al. A versatile intensity-based 3D/2D rigid registration compatible with mobile C-arm for endovascular treatment of abdominal aortic aneurysm[J]. International Journal of Computer Assisted Radiology & Surgery, 2016, 11(9): 1-17.

[20] Fajfar I, Puhan J, B?rmen á. Evolving a Nelder-Mead Algorithm for Optimization with Genetic Programming[J]. Evolutionary Computation, 2017, 25(3): 351-373.

[21] Press W, Flannery B, Teukolsky S, et al. Numerical recipes in C: the art of scientific computing[M]. Cambridge, England:Cambridge University Press, 1988.

[22] Mori S, Kumagai M, Miki K, et al. Development of fast patient position verification software using 2D-3D image registration and its clinical experience[J]. Journal of Radiation Research, 2015, 56(5): 818-829.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]