51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
擴(kuò)張-伸縮式機(jī)器人在腸道中的力學(xué)特性研究

Research on mechanical property of an expanding-extending robot in the intestinal environment

作者: 賀術(shù)  張震  顏國正 
單位:中國電子科技集團(tuán)公司第三十二研究所(上海 201800)<p>上海航天電子技術(shù)研究所(上海 201109)</p><p>上海交通大學(xué)電子信息與電氣工程學(xué)院(上海 200240)</p>
關(guān)鍵詞: 胃腸道;  機(jī)器人;  力學(xué)模型;  擬態(tài);  內(nèi)鏡 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·1(59-66)
摘要:

目的 腸道機(jī)器人內(nèi)鏡是新一代腸道疾病診療設(shè)備,為了提高這類設(shè)備在腸道內(nèi)自主運(yùn)動的效率,本文研究了機(jī)器人運(yùn)動機(jī)構(gòu)與腸道之間的相互作用力對設(shè)備自主運(yùn)動的影響。 方法 針對擴(kuò)張-伸縮式機(jī)器人的運(yùn)動原理提出了兩個模型,即擴(kuò)張機(jī)構(gòu)與腸道之間的力學(xué)模型、機(jī)器人機(jī)身與腸道之間的力學(xué)模型,并在豬體外腸道環(huán)境下開展了實(shí)驗(yàn)驗(yàn)證。 結(jié)果 機(jī)器人機(jī)身與腸道之間的阻力在0.1~0.4 N之間;擴(kuò)張機(jī)構(gòu)與腸道之間的阻力在0.1~1.8 N之間,且與擴(kuò)張直徑成正比。擴(kuò)張機(jī)構(gòu)的擴(kuò)張直徑大于腸道直徑超過10 mm后,擴(kuò)張機(jī)構(gòu)受到的腸道阻力將明顯大于0.1~0.4 N,有利于有效駐留的產(chǎn)生。結(jié)論 這種利用腿式結(jié)構(gòu)在腸道內(nèi)產(chǎn)生力學(xué)差使機(jī)器人實(shí)現(xiàn)在腸道內(nèi)自主運(yùn)動的方式,以及腿式結(jié)構(gòu)與腸道之間的力學(xué)模型能對胃腸道機(jī)器人的設(shè)計(jì)提供參考。

Objective Robotic intestinal endoscope is a new generation of intestinal diseases diagnosis equipment. In order to improve the autonomous locomotion efficiency of such devices in the intestinal environment, the motion mechanism and the interaction between intestine and the equipment is researched in the paper. Methods Two models are proposed based on the principle of the expanding-extending robot, which are respectively the mechanical model between expansion mechanism and the intestine, and the mechanical model between the robot body and the intestine. We carry out the experiment in vitro pig gut. Results The experimental results show that the resistance between the robot body and the intestinal tract is between 0.1N and 0.4N. The resistance between the expanding mechanism and the intestine is between 0.1 and 1.8N, which is proportional to the expansion diameter. Conclusions When the expansion of the expanding mechanism is larger than the diameter of the intestinal tract more than 10mm, the resistance of the expansion mechanism in the intestine will be significantly greater than 0.1-0.4 N, which is conducive to the effective anchor. The models can provide reference for the design of gastrointestinal robot.

參考文獻(xiàn):

[1] Menciassi A, Ciuti G, Cavallotti C. Future developments of video capsule endoscopy: Hardware[M]//Video Capsule Endoscopy. Berlin, Heidelberg:Springer, 2014: 543-556.

[2] Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy[J]. Nature, 2000, 405(6785): 417.

[3] Valdastri P, Simi M, Webster III R J. Advanced technologies for gastrointestinal endoscopy[J]. Annual Review of Biomedical Engineering, 2012, 14: 397-429.

[4] 楊凱, 顏國正, 高晉陽. 膠囊機(jī)器人無線能量傳輸系統(tǒng)設(shè)計(jì)[J]. 北京生物醫(yī)學(xué)工程, 2016,35 (5): 510-515.

Yang K, Yan GZ, Gao JY. Design of wireless power supply system for robotic capsule[J]. Beijing Biomedical Engineering, 2016,35 (5): 510-515.

 [5] Valdastri P, Webster RJ, Quaglia C, et al. A new mechanism for mesoscale legged locomotion in compliant tubular environments[J]. IEEE Transactions on Robotics, 2009, 25(5): 1047-1057.

[6] 高鵬, 顏國正. 仿尺蠖氣動腸道微機(jī)器人運(yùn)動系統(tǒng)[J]. 北京生物醫(yī)學(xué)工程, 2012, 31(5): 487-493.

Gao P, Yan GZ. Locomotion system of pneumatic inchworm-like microrobot for intestinal tract[J]. Beijing Biomedical Engineering, 2012, 31(5): 487-493.

[7] Terry BS, Schoen J A, Rentschler M E. Measurements of the contact force from myenteric contractions on a solid bolus[J]. Journal of Robotic Surgery, 2013, 7(1): 53-57.

[8] Terry BS, Passernig AC, Hill ML, et al. Small intestine mucosal adhesivity to in vivo capsule robot materials[J]. Journal of the Mechanical Behavior of  Biomedical Materials, 2012, 15: 24-32.

[9] Terry BS, Lyle AB, Schoen JA, et al. Preliminary mechanical characterization of the small bowel for in vivo robotic mobility[J]. Journal of Biomechanical Engineering, 2011, 133(9): 091010.

[10] Zhang C, Liu H, Tan R, et al. Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine[J]. Tribology Letters, 2012, 47(2): 295-301.

[11] Zhang C, Liu H, Li H. Modeling of frictional resistance of a capsule robot moving in the intestine at a constant velocity[J]. Tribology Letters, 2014, 53(1): 71-78.

[12] Chen W, Yan G, Wang Z, et al. A wireless capsule robot with spiral legs for human intestine[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(2): 147-161.

[13] Gao J, Yan G, Wang Z, et al. Locomotion enhancement of an inchworm-like capsule robot using long contact devices[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(2): e1759

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]