51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
往復(fù)式電磁鐵驅(qū)動搏動式血泵的可行性研究

Feasibility study on pulsatile blood pump driven by a reciprocating electromagnet

作者: 伍進平  葛斌  方旭晨  張少偉  張磊  魏凌軒 
單位:上海理工大學(xué)(上海 200093)<p>上海市東醫(yī)院危重癥醫(yī)學(xué)科(上海 200438)</p>
關(guān)鍵詞: 體外膜肺氧合;  往復(fù)式電磁鐵;  磁力;  搏動式血泵 
分類號:R318.01
出版年·卷·期(頁碼):2019·38·1(67-74)
摘要:

目的 為了得到更適合血液循環(huán)的動力裝置,提出一種用于體外膜肺氧合(extracorporeal membrane oxygenation,ECMO)系統(tǒng)由電磁鐵驅(qū)動的搏動式血泵,并研究其可行性。方法 首先利用電磁原理設(shè)計出電磁驅(qū)動機構(gòu),主要部件包括對稱的兩個電磁鐵和壓簧,兩個電磁鐵交替通電下使得動鐵芯往復(fù)運動;利用容積控制原理,泵腔在動鐵芯的驅(qū)動下收縮舒張;然后根據(jù)上述原理設(shè)計出血泵模型,包括電磁驅(qū)動部件和泵腔;最后建立包括血泵、電路控制部分、示波器、加速度傳感器、輸入輸出管路和儲液池的試驗臺,對血泵模型進行驅(qū)動力和流量輸出測試。結(jié)果 血泵模型在通電電壓7~12 V時動鐵芯的初始驅(qū)動力為2.97~8.00 N。血泵模型產(chǎn)生的初始驅(qū)動力與工作電壓呈正相關(guān)非線性關(guān)系,當(dāng)通入電壓12 V時血泵模型初始驅(qū)動力滿足要求。當(dāng)前壓與后壓為0、頻率80次/min、工作電壓7~12 V時的流量輸出為0.97~3.81 L/min。當(dāng)前壓與后壓為零,工作電壓12 V、頻率60~90次/min時的流量輸出為3.1~3.8 L/min。當(dāng)工作電壓12 V、頻率80次/min、前壓0~40 cmH2O和后壓50~110 cmH2O時的流量輸出為0.55~3.59 L/min。血泵流量與工作電壓和頻率呈正相關(guān),與后壓呈負相關(guān),與前壓無顯著性相關(guān)。結(jié)論 往復(fù)式電磁鐵驅(qū)動搏動式血泵基本滿足ECMO臨床要求,具有重要應(yīng)用前景,對體外循環(huán)血泵的發(fā)展具有重要意義,但仍需進一步研究和改進。

 Objective In order to obtain a power device that is more suitable for blood circulation, we proposes a pulse pump for extracorporeal membrane oxygenation (ECMO) system driven by an electromagnet and studies its feasibility. Methods Firstly, the electromagnetic drive mechanism is designed by using the electromagnetic principle. The main components include two symmetrical electromagnets and springs. The two electromagnets are alternately energized to make the moving iron core reciprocate.Using the principle of volume control, the pump cavity shrinks and relaxes under the action of moving iron core;Then design the pump model based on the above principles, including the electromagnetic drive components and pump chambers; Finally, a test bench including a blood pump, a circuit control section, an oscilloscope, an accelerometer, an input/output circuit, and a reservoir was established, and the blood pump model was tested for driving force and flow output. Results  In the blood pump model, the initial driving force of the moving iron core is 2.97-8.00 N when the energizing voltage is 7-12 V.The initial driving force generated by the blood pump model has a positive correlation with the working voltage. When the voltage is 12 V, the initial driving force of the blood pump model meets the requirements.The flow rate output is 0.97-3.81 L/min when the front pressure and back pressure are zero, the frequency is 80 times/min, and the working voltage is 7-12V.When the front pressure and back pressure are zero, when the operating voltage is 12 V, the flow output at a frequency of 60 to 90 times/min is 3.1 to 3.8 L/min.When the operating voltage is 12V and the frequency is 80 times/min, the flow output when the front pressure is 0-40 cmH2O and the back pressure is 50-110 cmH2O is 0.55-3.59 L/min.The blood pump flow is positively correlated with the working voltage and frequency, negatively correlated with the back pressure, and had no significant correlation with the front pressure. Conclusions The reciprocating electromagnet-driven pulsed blood pump basically meets the clinical requirements of extracorporeal membrane oxygenation, but further research and improvement are needed. The feasibility study has important application prospects and has important significance for the development of extracorporeal circulation blood pump. 

參考文獻:

[1] 李宓.急性呼吸窘迫綜合征[J].器官移植內(nèi)科學(xué)雜志,2008,3(2):77-89.

Li M.Acute respiratory distress syndrome [J]. Journal of Transplant Medicine,2008,3(2):77-89.  

[2] 肖大偉,徐博翎.基于集中參數(shù)模型的左心室輔助裝置血流動力學(xué)仿真[J].北京生物醫(yī)學(xué)工程,2016,35(4):367-373,380.

Xiao DW.Hsu PO. Hemodynamic recovery from heart failure with left ventricular assist device:a lumped-parameter simulation[J].Beijing Biomedical Engineering,2016,35(4):367-373,380. 

[3] 尹俊,白春學(xué).機械通氣在急性呼吸窘迫綜合征中的應(yīng)用進展[J].中國急救醫(yī)學(xué),2014,34(2):100-103.

Yin J. Bai CX.Mechanical ventilation in acute respiratory distress syndrome[J]. Chinese Journal of Critical Care Medicine,2014,34(2):100-103.

[4] Lee S.Chaturvedi A. Imaging adults on extracorporeal membrane oxygenation(ECMO) [J]. Insights Imaging,2014,5(6):731-742.

[5] 劉東,王盛宇,孫凌波, 等.ECMO的臨床應(yīng)用[J].北京生物醫(yī)學(xué)工程,2008,27(3):305-308,327.

Liu D.Wang SY.Sun LB.et al.Clinical use of extracorporeal membrane oxygenation[J].Beijing Biomedical Engineering,2008,27(3):305-308,327.

[6] Wu SC.Chen WT.Lin HH.et al. Use of extracorporeal membrane oxygenation in severe traumatic lung injury with respiratory failure [J]. American Journal of Emergency Medicine, 2015,33(5):658-662.

[7] 許自豪,楊明,歐文初, 等.基于數(shù)值模擬的血泵血液破壞性研究進展[J].中國醫(yī)療設(shè)備,2016,31(1):26-30,12.

Xu ZH.Yang M.Ou WC.et al.Advances in the Investigation of Numerical Simulation-based Blood Damage of Blood Pumps[J].China Medical Devices,2016,31(1):26-30,12.

[8] 李衛(wèi)東,姚奇,杜建軍, 等.基于CFD的液懸浮人工心臟泵葉輪入口優(yōu)化分析[J].北京生物醫(yī)學(xué)工程,2017,36(1):21-28,54. 

Li WD.Yao Q.Du JJ.et al.Optimizationan alysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD[J].Beijing Biomedical Engineering,2017,36(1):21-28,54. 

[9] 魏朝富,楊石平.緊湊型軸流式血泵電機的設(shè)計與仿真[J].現(xiàn)代機械,2016,(5):61-64.

Wei CF.Yang SP.Design and simulation of the motor for compact axial-flow blood pump[J].Modern Machinery,2016,(5):61-64.

[10] Kafagy D H.Dwyer T W.Mckenna K L.Mulles J P.et al.Design of axial blood pumps for patients with dysfunctional fontan physiology: computational studies and performance testing[J].Artificial Organs, 2015, 39(1): 34-42.

[11] 王陽,楊明,許自豪, 等.一種離心血泵的血流動力學(xué)特性分析[J].中國醫(yī)療器械雜志,2015,39(1):16-20. 

Wang Y.Yang M.Xu ZH.et al.Hemodynamic analysis of a centrifugal blood pump[J].Chinese Journal of Medical Instrumentation,2015,39(1):16-20. 

[12] 王少強,魏松洋,馬志強, 等.搏動灌注和非搏動灌注對腎功能的影響[J].中國體外循環(huán)雜志,2011,9(3):149-151,155.

Wang SQ.Wei SY.Ma ZQ.et al.The impact of pulsatile and non-pulsatile perfusion on renal function in patients underwent cardiopulmonary bypass[J]. Chinese Journal of Extracorporeal Circulation,2011,9(3):149-151,155. 

[13] 趙舉,楊九光,劉晉萍, 等.搏動體外循環(huán)增加小兒腦氧供及改善組織微循環(huán)的臨床研究[J].中國體外循環(huán)雜志,2011,9(3):145-148,162.

Zhao J.Yang JG.Liu JP.et al.Clinical study of pulsatile cardiopulmonary bypass on increasing cerebral oxygenation and ameliorating tissue microcirculation in pediatric heart surgery[J]. Chinese Journal of Extracorporeal Circulation,2011,9(3):145-148,162.

[14] 譚江浩,葛斌,方旭晨, 等.磁耦合驅(qū)動搏動式血泵的可行性研究[J].醫(yī)用生物力學(xué),2015,30(5):458-462,478.

Tan JH.Ge B.Fang XC.et al.Feasibility study on magnetic coupling-driven pulsate blood pump[J].Journal of Medical Biomechanics,2015,30(5):458-462,478.

[15] 陸通,葛斌,劉京京,等. 搏動式電磁血泵電控系統(tǒng)的研究[J/OL]. 自動化學(xué)報,2017,44(X):1-9..[2017-11-02]. http://kns.cnki.net/kcms/detail/11.2109.TP.20171102.1411.009.html

Lu T.Ge B.Liu JJ.et al.The Study for electric control system of electromagnetic pulsate blood pump[J].Acta Automatica Sinica,2017,44(X):1-9.[2017-11-02]. http://kns.cnki.net/kcms/detail/11.2109.TP.20171102.1411.009.html

[16] 劉京京,葛斌,陸通,等.短期輔助用直流電磁驅(qū)動搏動式血泵設(shè)計與測試[J].中國生物醫(yī)學(xué)工程學(xué)報,2018,37(1):49-56.

Liu JJ.Ge B.Lu T.et al.The Design and test of pulsating blood pump driven by direct-current electromagnetism for temporary assistance[J].Chinese Journal of Biomedical Engineering,2018,37(1):49-56.

[17] 吳倩,李建,蘇秀蘋.一種螺管式電磁鐵的靜態(tài)特性及其影響因素分析[J].電器與能效管理技術(shù),2017,(1):8-12.

Wu Q.Li J.Su XP. Static characteristics and innuencing factors of a solenoid magnet[J].Electrical and energy efficiency management technology,2017,(1):8-12.

[18] 婁路亮,王海洲.電磁閥設(shè)計中電磁力的工程計算方法[J].導(dǎo)彈與航天運載技術(shù),2007,287(1):40-45.

Liu LL.Wang HZ.Methods of Electromagnetic Force Calculation for Engineering Application[J].Missile and Space Vehcile,2007,287(1):40-45.

[19] 王蓮蕓. 現(xiàn)代醫(yī)學(xué)導(dǎo)論[M]. 北京: 科學(xué)出版社, 2010.

[20] 王庭槐. 生理學(xué)[M]. 北京: 高等教育出版社, 2004.

[21] Maslach-Hubbard A.Bratton SL.Extracorporeal membrane oxygenation for pediatric respiratory failure:History,development and current status[J]. World Journal of Critical Care Medicine,2013,2(4):29-39.

[22] 路力軍,胡兆燕,陳正龍, 等.體外循環(huán)用血泵研究進展[J].北京生物醫(yī)學(xué)工程,2012,31(4):433-439.

Lu LJ.Hu ZY.Chen ZL.et al.Research on the blood pump for extracorporeal circulation[J].Beijing Biomedical Engineering,2012,31(4):433-439.

[23] 陳智慧,張婭,常宇.心室輔助下切應(yīng)力對紅細胞形態(tài)的影響[J].北京生物醫(yī)學(xué)工程,2015,34(2):125-132. 

Chen ZH.Zhang Y.Chang Y.Effect of shear stress on the changes in erythrocyte morphology under continuous flow ventricular assist device[J].Beijing Biomedical Engineering,2015,34(2):125-132.

[24] 程云章,朱莉花,張偉國.基于CFD技術(shù)的Sarns離心式血泵流動特性分析[J].北京生物醫(yī)學(xué)工程,2012,31(2):111-116. 

Cheng YZ.Zhu LH.Zhang WG.Flow characteristics in Sarns centrifugal blood pump based on computational fluid dynamics technology[J].Beijing Biomedical Engineering,2012,31(2):111-116.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]