51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
腹主動脈瘤計算機(jī)仿真研究進(jìn)展

Progress of computer simulation in abdominal aortic aneurysm

作者: 楊馮棱  郭立  王依影 
單位:昆明醫(yī)科大學(xué)第二附屬醫(yī)院放射科(昆明 650101)
關(guān)鍵詞: 腹主動脈瘤;  計算流體力學(xué);  血流動力學(xué);  生物力學(xué);  數(shù)值模擬 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·2(212-217)
摘要:

腹主動脈瘤(abdominal aortic aneurysm , AAA)是腹主動脈較常見的疾病,破裂之后致死率極高,因此,及時發(fā)現(xiàn)和評估AAA破裂的風(fēng)險就具有重要意義。近年來隨著醫(yī)學(xué)影像、計算機(jī)及血流動力學(xué)等理論和技術(shù)的快速發(fā)展,利用計算機(jī)模擬技術(shù)對AAA進(jìn)行仿真研究已成為研究的熱點(diǎn),其模擬的結(jié)果趨于人體真實(shí)的動脈瘤,并在揭示AAA的發(fā)生及演變的機(jī)制方面發(fā)揮了重要作用。本文介紹了AAA仿真研究的原理及模型分類,詳細(xì)地闡述了瘤體形態(tài)、瘤壁的結(jié)構(gòu)及屬性、血液及血流的屬性、腔內(nèi)血栓等相關(guān)因素在仿真研究中的作用,并對其目前的進(jìn)展及局限性予以綜述。

Abdominal aortic aneurysm (AAA) is a common disease of abdominal aorta, its mortality rate is very high when ruptured. Therefore, it is of great significance to timely detect and assess the risk of rupture of AAA. Recently, with the rapid development of medical imaging technology, computer technology and hemodynamics theories, the simulation study of AAA has become a hot research topic. The simulation results are increasingly close to the real aneurysms of human and play a significant role in revealing the mechanism of the origin and evolution of AAA. Therefore, this paper introduces the principle and model classification of simulation of AAA, expounds detailedly the role of geometry, blood vessel wall structure and properties, properties of blood and blood flow, intraluminal thrombus and other related factors in simulation study, and summarizes the current progress and limitation.

參考文獻(xiàn):

[1] Moll FL, Powell JT, Fraedrich G, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery [J]. European Journal Vascular and Endovascular Surgery, 2011,41 (Suppl 1): S1-S58.

[2] O'Leary SA, Healey DA, Kavanagh EG, et al. The biaxial biomechanical behavior of abdominal aortic aneurysm tissue[J]. Annals of Biomedical Engineering, 2014,42(12): 2440-2450.

[3] Li H, Lin K, Shahmirzadi D. FSI simulations of pulse wave propagation in human abdominal aortic aneurysm: the effects of sac geometry and stiffness [J]. Biomedical Engineering and Computational Biology, 2016,7: 25-36.

[4] 史正濤, 李志勇. 腹主動脈瘤的數(shù)值計算模型比較研究[J]. 醫(yī)用生物力學(xué), 2012,27(5): 495-500.

Shi ZT,Li ZY. Comparison between computational models of abdominal aortic aneurysm[J]. Journal of Medical Biomechanics, 2012,27(5): 495-500.

[5] Soudah E, Ng EY, Loong TH, et al. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT [J]. Computational and Mathematical Methods in Medicine, 2013,2013: 472564.

[6] Lin S, Han X, Bi Y, et al. Fluid-structure interaction in abdominal aortic aneurysm: effect of modeling techniques [J]. Biomed Research International, 2017,2017: 7023078.

[7] Bluestein D, Alemu Y, Avrahami I, et al. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling [J]. Journal of Biomechanics, 2008,41(5): 1111-1118.

[8] 王小燕, 張昆亞, 朱立鳴, 等. 利用力學(xué)方法建立囊狀動脈瘤動物模型[J]. 北京生物醫(yī)學(xué)工程, 2008,27(6): 632-636.

Wang XY, Zhang KY, Zhu LM,et al. Mechanical method for establishing the saccular aneurysm animal model[J]. Beijing Biomedical Engineering, 2008,27(6): 632-636.

[9] 池繁武.腹主動脈瘤的有限元分析[D].廣州:暨南大學(xué),2015. 

Chi FW.The finite element analysis of abdominal aortic aneursym[D].Guangzhou: Jinan University,2015.

[10] 李永生,董智慧,符偉國,等.主動脈血流動力學(xué)數(shù)值模擬研究進(jìn)展[J].中華實(shí)驗(yàn)外科雜志,2014,31(1):217-218.

[11] Xenos M, Labropoulos N, Rambhia S, et al. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid-structure interaction method [J]. Annals of Biomedical Engineering, 2015,43(1): 139-153.

[12] Raut SS, Chandra S, Shum J, et al. The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment [J]. Annals of Biomedical Engineering, 2013,41(7): 1459-1477.

[13] Antonopoulos CN, Kakisis JD, Giannakopoulos TG, et al. Rupture after endovascular abdominal aortic aneurysm repair: a multicenter study [J]. Vascular and Endovascular Surgery, 2014,48(7-8): 476-481.

[14] Kontopodis N, Metaxa E, Papaharilaou Y, et al. Changes in geometric configuration and biomechanical parameters of a rapidly growing abdominal aortic aneurysm may provide insight in aneurysms natural history and rupture risk [J]. Theoretical Biology and Medical Modelling, 2013,10: 67.

[15] Canchi T, Kumar SD, Ng EY, et al. A review of computational methods to predict the risk of rupture of abdominal aortic aneurysms[J]. Biomed Research International, 2015,2015: 861627.

[16] Romo A, Badel P, Duprey A, et al. In vitro analysis of localized aneurysm rupture [J]. Journal of Biomechanics, 2014,47(3): 607-616.

[17] Conlisk N, Geers AJ, McBride OM, et al. Patient-specific modelling of abdominal aortic aneurysms: The influence of wall thickness on predicted clinical outcomes [J]. Medical Engineering & Physics, 2016,38(6): 526-537.

[18] 楊金有, 俞航, 劉靜,等. 流固耦合分析分層的腹主動脈瘤模型[J]. 生物醫(yī)學(xué)工程與臨床, 2014,18(4): 310-314.

Yang JY, Yu H, Liu J, et al.Layered abdominal aortic aneurysm model based on fluid-structure interaction[J]. Biomedical Engineering and Clinical Medicine, 2014,18(4): 310-314.

[19] Ene F, Delassus P, Morris L. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics [J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 2014,228(8): 768-780.

[20] Rissland P, Alemu Y, Einav S, et al. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model[J]. Journal of Biomechanical Engineering, 2009,131(3): 031001.

[21] Xenos M, Rambhia SH, Alemu Y, et al. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling[J]. Annals of Biomedical Engineering, 2010,38(11): 3323-3337.

[22] TerBush M, Rasheed K, Young ZZ, et al. Aortoiliac calcification correlates with 5-year survival after abdominal aortic aneurysm repair [J]. Journal of Vascular Surgery, 2018,67(1):e18-e19.

[23] O'Leary SA, Mulvihill JJ, Barrett HE, et al. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015,42: 154-167.

[24] 劉靜, 楊金有, 洪洋. 正常體位下人體椎動脈內(nèi)血流動力學(xué)數(shù)值模擬分析 [J]. 中國醫(yī)學(xué)物理學(xué)雜志, 2015,32(1): 110-114.

Liu J, Yang JY, Hong Y.Numerical simulation analysis of hemodynamics in human vertebral artery under the normal position[J]. Chinese Journal of Medical Physics, 2015,32(1): 110-114.

[25] Marrero VL, Tichy JA, Sahni O, et al. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm [J]. Journal of Biomechanical Engineering, 2014,136(10): 101001.

[26] Lee JJ, D'Ancona G, Amaducci A, et al. Role of computational modeling in thoracic aortic pathology: a review [J]. Journal of Cardiac Surgery, 2014,29(5): 653-662.

[27] Guccione JM, Kassab GS, Ratcliffe MB. Computational cardiovascular mechanics[M].New York: Springer Science & Business Media, 2010: 159-176.

[28] Lee K, Zhu J, Shum J, et al. Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis [J]. Annals of Biomedical Engineering, 2013,41(3): 562-576.

[29] Hardman D, Semple SI, Richards JM, et al. Comparison of patient-specific inlet boundary conditions in the numerical modelling of blood flow in abdominal aortic aneurysm disease [J]. International Journal for Numerical Methods in Biomedical Engineering, 2013,29(2): 165-178.

[30] Humphrey JD, Holzapfel GA. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms [J]. Journal of Biomechanics, 2012,45(5): 805-814.

[31] Polzer S, Gasser TC, Swedenborg J, et al. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms [J]. European Journal of Vascular and Endovascular Surgery, 2011,41(4): 467-473.

[32] Metaxa E, Kontopodis N, Tzirakis K, et al. Effect of intraluminal thrombus asymmetrical deposition on abdominal aortic aneurysm growth rate [J]. Journal of Endovascular Therapy, 2015,22(3): 406-412.

[33] Haller SJ, Crawford JD, Courchaine KM, et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm [J]. Journal of Vascular Surgery, 2018,67(4): 1051-1058.e1.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]