[1] Moll FL, Powell JT, Fraedrich G, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery [J]. European Journal Vascular and Endovascular Surgery, 2011,41 (Suppl 1): S1-S58. [2] O'Leary SA, Healey DA, Kavanagh EG, et al. The biaxial biomechanical behavior of abdominal aortic aneurysm tissue[J]. Annals of Biomedical Engineering, 2014,42(12): 2440-2450. [3] Li H, Lin K, Shahmirzadi D. FSI simulations of pulse wave propagation in human abdominal aortic aneurysm: the effects of sac geometry and stiffness [J]. Biomedical Engineering and Computational Biology, 2016,7: 25-36. [4] 史正濤, 李志勇. 腹主動脈瘤的數(shù)值計算模型比較研究[J]. 醫(yī)用生物力學(xué), 2012,27(5): 495-500. Shi ZT,Li ZY. Comparison between computational models of abdominal aortic aneurysm[J]. Journal of Medical Biomechanics, 2012,27(5): 495-500. [5] Soudah E, Ng EY, Loong TH, et al. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT [J]. Computational and Mathematical Methods in Medicine, 2013,2013: 472564. [6] Lin S, Han X, Bi Y, et al. Fluid-structure interaction in abdominal aortic aneurysm: effect of modeling techniques [J]. Biomed Research International, 2017,2017: 7023078. [7] Bluestein D, Alemu Y, Avrahami I, et al. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling [J]. Journal of Biomechanics, 2008,41(5): 1111-1118. [8] 王小燕, 張昆亞, 朱立鳴, 等. 利用力學(xué)方法建立囊狀動脈瘤動物模型[J]. 北京生物醫(yī)學(xué)工程, 2008,27(6): 632-636. Wang XY, Zhang KY, Zhu LM,et al. Mechanical method for establishing the saccular aneurysm animal model[J]. Beijing Biomedical Engineering, 2008,27(6): 632-636. [9] 池繁武.腹主動脈瘤的有限元分析[D].廣州:暨南大學(xué),2015. Chi FW.The finite element analysis of abdominal aortic aneursym[D].Guangzhou: Jinan University,2015. [10] 李永生,董智慧,符偉國,等.主動脈血流動力學(xué)數(shù)值模擬研究進(jìn)展[J].中華實(shí)驗(yàn)外科雜志,2014,31(1):217-218. [11] Xenos M, Labropoulos N, Rambhia S, et al. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid-structure interaction method [J]. Annals of Biomedical Engineering, 2015,43(1): 139-153. [12] Raut SS, Chandra S, Shum J, et al. The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment [J]. Annals of Biomedical Engineering, 2013,41(7): 1459-1477. [13] Antonopoulos CN, Kakisis JD, Giannakopoulos TG, et al. Rupture after endovascular abdominal aortic aneurysm repair: a multicenter study [J]. Vascular and Endovascular Surgery, 2014,48(7-8): 476-481. [14] Kontopodis N, Metaxa E, Papaharilaou Y, et al. Changes in geometric configuration and biomechanical parameters of a rapidly growing abdominal aortic aneurysm may provide insight in aneurysms natural history and rupture risk [J]. Theoretical Biology and Medical Modelling, 2013,10: 67. [15] Canchi T, Kumar SD, Ng EY, et al. A review of computational methods to predict the risk of rupture of abdominal aortic aneurysms[J]. Biomed Research International, 2015,2015: 861627. [16] Romo A, Badel P, Duprey A, et al. In vitro analysis of localized aneurysm rupture [J]. Journal of Biomechanics, 2014,47(3): 607-616. [17] Conlisk N, Geers AJ, McBride OM, et al. Patient-specific modelling of abdominal aortic aneurysms: The influence of wall thickness on predicted clinical outcomes [J]. Medical Engineering & Physics, 2016,38(6): 526-537. [18] 楊金有, 俞航, 劉靜,等. 流固耦合分析分層的腹主動脈瘤模型[J]. 生物醫(yī)學(xué)工程與臨床, 2014,18(4): 310-314. Yang JY, Yu H, Liu J, et al.Layered abdominal aortic aneurysm model based on fluid-structure interaction[J]. Biomedical Engineering and Clinical Medicine, 2014,18(4): 310-314. [19] Ene F, Delassus P, Morris L. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics [J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 2014,228(8): 768-780. [20] Rissland P, Alemu Y, Einav S, et al. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model[J]. Journal of Biomechanical Engineering, 2009,131(3): 031001. [21] Xenos M, Rambhia SH, Alemu Y, et al. Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling[J]. Annals of Biomedical Engineering, 2010,38(11): 3323-3337. [22] TerBush M, Rasheed K, Young ZZ, et al. Aortoiliac calcification correlates with 5-year survival after abdominal aortic aneurysm repair [J]. Journal of Vascular Surgery, 2018,67(1):e18-e19. [23] O'Leary SA, Mulvihill JJ, Barrett HE, et al. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015,42: 154-167. [24] 劉靜, 楊金有, 洪洋. 正常體位下人體椎動脈內(nèi)血流動力學(xué)數(shù)值模擬分析 [J]. 中國醫(yī)學(xué)物理學(xué)雜志, 2015,32(1): 110-114. Liu J, Yang JY, Hong Y.Numerical simulation analysis of hemodynamics in human vertebral artery under the normal position[J]. Chinese Journal of Medical Physics, 2015,32(1): 110-114. [25] Marrero VL, Tichy JA, Sahni O, et al. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm [J]. Journal of Biomechanical Engineering, 2014,136(10): 101001. [26] Lee JJ, D'Ancona G, Amaducci A, et al. Role of computational modeling in thoracic aortic pathology: a review [J]. Journal of Cardiac Surgery, 2014,29(5): 653-662. [27] Guccione JM, Kassab GS, Ratcliffe MB. Computational cardiovascular mechanics[M].New York: Springer Science & Business Media, 2010: 159-176. [28] Lee K, Zhu J, Shum J, et al. Surface curvature as a classifier of abdominal aortic aneurysms: a comparative analysis [J]. Annals of Biomedical Engineering, 2013,41(3): 562-576. [29] Hardman D, Semple SI, Richards JM, et al. Comparison of patient-specific inlet boundary conditions in the numerical modelling of blood flow in abdominal aortic aneurysm disease [J]. International Journal for Numerical Methods in Biomedical Engineering, 2013,29(2): 165-178. [30] Humphrey JD, Holzapfel GA. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms [J]. Journal of Biomechanics, 2012,45(5): 805-814. [31] Polzer S, Gasser TC, Swedenborg J, et al. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms [J]. European Journal of Vascular and Endovascular Surgery, 2011,41(4): 467-473. [32] Metaxa E, Kontopodis N, Tzirakis K, et al. Effect of intraluminal thrombus asymmetrical deposition on abdominal aortic aneurysm growth rate [J]. Journal of Endovascular Therapy, 2015,22(3): 406-412. [33] Haller SJ, Crawford JD, Courchaine KM, et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm [J]. Journal of Vascular Surgery, 2018,67(4): 1051-1058.e1.
|