51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
人工智能在醫(yī)學(xué)影像診斷中的應(yīng)用

Application of artificial intelligence in medical imaging diagnosis

作者: 劉豐偉  唐曉英  王尊升  李漢軍 
單位:北京理工大學(xué)(北京100000)
關(guān)鍵詞: 人工智能;  醫(yī)學(xué)影像診斷;  分割;  早期診斷;  檢測(cè) 
分類號(hào):R318
出版年·卷·期(頁(yè)碼):2019·38·2(206-211)
摘要:

人工智能在處理大數(shù)據(jù)、復(fù)雜非確定性數(shù)據(jù)、深入挖掘數(shù)據(jù)潛在信息等方面有著超越人類的優(yōu)勢(shì)。醫(yī)學(xué)影像數(shù)據(jù)包含豐富的人體健康信息,是醫(yī)生做出醫(yī)學(xué)診斷的重要依據(jù)。面對(duì)復(fù)雜的醫(yī)學(xué)影像信息和持續(xù)增長(zhǎng)的醫(yī)學(xué)影像診斷需求,醫(yī)生人工影像解讀暴露出的易受主觀認(rèn)知影響、效率低且誤診率高等諸多缺點(diǎn)愈加明顯。本文從人工智能技術(shù)特點(diǎn)出發(fā),結(jié)合具體病癥分析人工智能在人體結(jié)構(gòu)、病灶區(qū)的分割,疾病的早期診斷,解剖結(jié)構(gòu)、病灶區(qū)的檢測(cè)等方面的研究成果,最后總結(jié)現(xiàn)階段人工智能在醫(yī)學(xué)影像診斷中尚存在的問(wèn)題,包括診斷結(jié)果可解釋性差、醫(yī)學(xué)數(shù)據(jù)量少及系統(tǒng)性評(píng)估標(biāo)準(zhǔn)缺失等,并進(jìn)一步分析未來(lái)人工智能在醫(yī)學(xué)影像診斷中的發(fā)展方向。

Artificial intelligence has advantages over human in dealing with big data, complex non-deterministic data, and deep mining of potential information. Medical image data contains a wealth of information on human health and is an important basis for doctors to make medical diagnosis. Faced with complex medical imaging information and the growing demand for medical imaging diagnosis, image interpretion by doctors shows many shortcomings such as susceptibility for subjective cognition, low efficiency and high misdiagnosis rate. Based on the characteristics of artificial intelligence, this paper focuses on the analysis of artificial intelligence in segmentation of human body structure and lesion, early diagnosis of disease, detection of anatomical structure and lesion area, etc. At present, the application of artificial intelligence in medical imaging diagnosis still has problems such as poor interpretability, less available medical data and lack of systematic evaluation criteria, and the future development of artificial intelligence in medical imaging diagnosis is further analyzed.

參考文獻(xiàn):

[1] Bigler ED. Neuroimaging as a biomarker in symptom validity and performance validity testing [J]. Brain Imaging and Behavior, 2015, 9(3): 421-444.

[2] 劉飛, 張俊然, 楊豪. 基于深度學(xué)習(xí)的醫(yī)學(xué)圖像識(shí)別研究進(jìn)展 [J]. 中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào), 2018, 37(1): 86-94.

Liu F, Zhang JR, Yang H. Research progress of medical image recognition based on deep learning[J]. Chinese Journal of Biomedical Engineering, 2018, 37(1): 86-94.

[3] 王博超, 張新峰. 基于人工智能和臨床診斷的上肢康復(fù)評(píng)估方法研究進(jìn)展[J]. 北京生物醫(yī)學(xué)工程, 2018, 37(1): 103-108.

Wang BC, Zhang XF. Research progress of assessment methods based on artifical intelligence and clinical diagnosis in upper limb rehabilitation [J]. Beijing Biomedical Engineering, 2018, 37(1): 103-108.

[4] Fasihi MS, Mikhael WB. Overview of current biomedical image segmentation methods[C]// 2016 International Conference on Computational Science and Computational Intelligence.  Las Vegas, NV, USA: IEEE Press, 2017:803-808.

[5] Sumathi T, Vivekanandan P, Balaji R. Retinal vessel segmentation using neural network (RVSNN) [J]. IET Image Processing, 2018,12(5): 669-678. 

[6] Brancati N, Frucci M, Gragnaniello D, et al. Learning-based approach to segment pigment signs in fundus images for Retinitis Pigmentosa analysis[J]. Neurocomputing, 2018,308:159-171.

[7] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42(9): 60-88.

[8] Cirean DC, Giusti A, Gambardella LM, et al. Deep neural networks segment neuronal membranes in electron microscopy images[J]. Advances in Neural Information Processing Systems, 2012, 25:2852-2860.

[9] Pereira S, Pinto A, Alves V, et al. Brain tumor segmentation using convolutional neural networks in MRI images [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1240-1251.

[10] Brosch T, Tang LY, Yoo Y, et al. Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1229-1239.

[11] Summers RM. Progress in fully automated abdominal CT interpretation [J]. American Journal of Roentgenology, 2016, 207(1): 67-79.

[12] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015,9351:234-241.

[13] Zhang R, Shen J, Wei F, et al. Medical image classification based on multi-scale non-negative sparse coding[J]. Artificial Intelligence in Medicine, 2017, 83: 44-51.

[14] Suk HI, Shen D. Deep learning-based feature representation for AD/MCI classification [J]. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2013, 16(Pt 2): 583-590.

[15] Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI [J]. Behavioural Brain Research, 2017, 322(Pt B):339-350.

[16] Suk HI, Lee SW, Shen D. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis [J]. Brain Structure & Function, 2015, 220(2): 841-859.

[17] Hosseini-Asl E, Ghazal M, Mahmoud A, et al. Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network [J]. Frontiers in Bioscience (Landmark Edition), 2018, 23: 584-596.

[18] Wang SH, Phillips P, Sui Y, et al. Classification of Alzheimer's disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling [J]. Journal of Medical Systems, 2018, 42(5): 85-95.

[19] Capper D, Jones DTW, Sill M, et al. DNA methylation-based classification of central nervous system tumours[J]. Nature, 2018, 555(7697): 469-474.

[20] Xu J, Xiang L, Liu Q, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images [J]. IEEE Transactions on Medical Imaging, 2016, 35(1): 119-130.

[21] Vesal S, Ravikumar N, Davari AA, et al. Classification of breast cancer histology images using transfer learning[C]// International Conference Image Analysis and Recognition. Berlin: Springer, 2018: 812-819.

[22] Turkki R, Linder N, Kovanen PE, et al. Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples [J]. Journal of Pathology Informatics, 2016, 7(1):38-46.

[23] Xu Y, Jia Z, Wang LB, et al. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features[J]. BMC Bioinformatics, 2017, 18(1): 281-297.

[24] Kllén H, Molin J, Heyden A, et al. Towards grading gleason score using generically trained deep convolutional neural networks[C]// IEEE, International Symposium on Biomedical Imaging. Prague, Czech Republic: IEEE Press, 2016: 1163-1167.

[25] Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122–1131.

[26] Yang D, Zhang S, Yan Z, et al. Automated anatomical landmark detection ondistal femur surface using convolutional neural network[C]// 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, NY, USA: IEEE Press, 2015: 17-21.

[27] Huang R, Xie W, Alison NJ. VP-Nets : efficient automatic localization of key brain structures in 3D fetal neurosonography[J]. Medical Image Analysis, 2018: 127-139.

[28] Chen H, Yu L, Dou Q, et al. Automatic detection of cerebral microbleeds via deep learning based 3D feature representation[C]// 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). New York, NY, USA: IEEE Press, 2015:764-767.

[29] Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1182-1195.

[30] Jiang H, Ma H, Qian W, et al. An automatic detection system of lung nodule based on multi-group patch-based deep learning network[J]. IEEE Journal of Biomedical & Health Informatics, 2017,22(4):1227-1237.

[31] Yap MH, Pons G, Marti J, et al. Automated breast ultrasound lesions detection using convolutional neural networks[J]. IEEE Journal of  Biomedical and Health Informatics, 2017,22(4): 1218-1226.

[32] Roth HR, Lu L, Liu J, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1170-1181.

[33] Setio AA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1160-1169.

[34] van Grinsven MJJP, van Ginneken B, Hoyng CB, et al. Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1273-1284.

[35] Humpire-Mamani GE, Setio A, van Ginneken B, et al. Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans[J]. Physics in Medicine & Biology, 2018,63(8): 085003.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]