51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
心血管介入手術輻射劑量影響因素的分析

Analysis on influence factors of X-ray radiation dose in cardiovascular interventions

作者: 楊博鑫  李言  武王將  楊智 
單位:首都醫(yī)科大學生物醫(yī)學工程學院(北京 100069)
關鍵詞: 心血管介入;  X射線;  輻射劑量 
分類號:R318
出版年·卷·期(頁碼):2019·38·2(171-176)
摘要:

目的 測定不同類型心血管介入手術患者接受的X線輻射劑量,并對臨床實踐中與輻射劑量相關的因素進行分析,以降低患者接受的輻射劑量。方法 隨機采集2016年1月至2017年12月間在首都醫(yī)科大學附屬北京安貞醫(yī)院心臟內科導管室進行心血管介入治療的360例患者。根據心血管介入手術類型的不同,共分為5組:冠狀動脈造影術 (coronary angiography, CAG) 組、經皮冠狀動脈介入治療(percutaneous coronary intervention, PCI)組、心導管射頻消融術 (radiofrequency catheter ablation, RFCA) 組、先天性心臟病治療 (congenital heart diseases therapy, CHD) 組、永久性心臟起搏器植入術 (permanent cardiac pacemaker implantation, PCPI) 組。分析相關參數(shù)包括劑量面積乘積(dose-area product, DAP)、累積皮膚表面入射劑量(cumulative dose, CD)、透視時間(fluoroscopy time, FT)、峰值皮膚劑量(peak skin dose, PSD)、攝像幀數(shù)、患者BMI及設備使用年限等,確定心血管介入手術中造成輻射劑量差異的主要因素。結果 CHD組患者BMI在各組之中最低。CAG組急診比例最高(32.0%),CHD組患者年齡最低。CAG組和CHD組的CD值、DAP值、FT和PSD均為較低水平。PCI組患者接受輻射劑量最高(P<0.05)。PCPI患者接受輻射劑量明顯偏低,劑量多為0.5 Gy以下。患者的透視時間與CD值和DAP值呈現(xiàn)正相關,不同術者之間患者接受輻射劑量的差異具有統(tǒng)計學意義。DAP值與患者BMI高度相關。患者BMI(>30kg/m2)、設備使用年限(>7y)、PCI操作以及操作者技術水平是患者輻射劑量偏高與否的臨床特征。結論 患者本體參數(shù)、介入方式以及操作者決定了患者輻射劑量的臨床特征。此外,設備使用年限、攝影幀數(shù)、透視時間、透視劑量也與患者輻射劑量有關。

Objective This study determinates the radiation doses of patients under different types of cardiovascular interventions and analyzes the major factors associated with radiation dose in routine clinical practice to reduce the radiation doses received by the patients. Methods There were 360 patients with cardiovascular interventions in Cardiology Department, Beijing Anzhen Hospital, Capital Medical University between January 2016 and December 2017 randomly selected in this study. According to the types of cardiovascular interventions, there were 5 groups: coronary angiography (CAG), percutaneous coronary intervention (PCI), radiofrequency catheter ablation (RFCA), congenital heart diseases therapy (CHD), and permanent cardiac pacemaker implantation (PCPI). The acquisition parameters included dose-area product (DAP), cumulative dose (CD), fluoro time (FT), peak skin dose (PSD), frame rate, BMI and device age. We analyzed the relevant parameters to determine the influence factors of radiation dose in interventional surgery. Results The BMI in CHD group was the lowest among all groups. CAG group had the highest proportion of emergency (32.0%). Patients in CHD group had the youngest age. CD, DAP, fluoroscopy time, and PSD of CAG group and CHD group were the lowest. Patients in PCPI group received significantly lower radiation doses (below 0.5 Gy). Fluoroscopy time showed positive correlation with CD value and DAP value. The difference of radiation dose of the patients by different operators was statistically significant. DAP was highly correlated with patient BMI and increased slightly with age. Patient BMI (> 30 kg / m2), device age (> 7 years), PCI operation, and operator skills were the important factors determining the radiation dose. Conclusions Patient properties, types of interventions, and operators determine the radiation dose in clinical practice. In addition, equipment life, frame rate, fluoroscopy time are also relevant to the radiation dose received by the patient.

參考文獻:

1. Sherer MAS, Visconti PJ, Ritenour ER, et al. Radiation protection in medical radiography[M]. Amsterdam, Netherlands: Elsevier Health Sciences, 2014.

2. Christopoulos G, Makke L, Christakopoulos G, et al. Optimizing radiation safety in the cardiac catheterization laboratory[J]. Catheterization and Cardiovascular Interventions, 2016, 87(2): 291-301.

3. Carpeggiani C, Picano E. The radiology informed consent form: recommendations from the European Society of Cardiology position paper[J]. Journal of Radiological Protection, 2016, 36(2): S175.

4. Cousins C, Miller DL, Bernardi G, et al. ICRP publication 120: radiological protection in cardiology[J]. Annals of the ICRP 2013,42(1):1–125.

5. Durán A, Hian SK, Miller DL, et al. A summary of recommendations for occupational radiation protection in interventional cardiology[J]. Catheterization and Cardiovascular Interventions, 2013, 81(3): 562-567.

6. Jaschke W, Schmuth M, Trianni A, et al. Radiation-induced skin injuries to patients: what the interventional radiologist needs to know[J]. CardioVascular and Interventional Radiology, 2017,40(8): 1131-1140.

7. Pyne CT, Gadey G, Jeon C, et al. Effect of reduction of the pulse rates of fluoroscopy and CINE-acquisition on X-ray dose and angiographic image quality during invasive cardiovascular procedures[J]. Circulation: Cardiovascular Interventions, 2014, 7(4): 441-446.

8. Ladouceur VB, Lawler PR, Gurvitz M, et al. Exposure to low-dose ionizing radiation from cardiac procedures in patients with congenital heart disease[J]. Circulation, 2016, 133(1): 12-20.

9. Ruiz-Cruces R, Vano E, Carrera-Magario F, et al. Diagnostic reference levels and complexity indices in interventional radiology: a national programme[J]. European Radiology, 2016, 26(12): 4268-4276.

10. Bartal G, Vano E, Paulo G, et al. Management of patient and staff radiation dose in interventional radiology: current concepts[J]. CardioVascular and Interventional Radiology, 2014, 37(2): 289-298.

11. Stecker MS, Balter S, Towbin RB. Guidelines for patient radiation dose management[J]. Journal of Vascular and Interventional Radiology, 2009, 20(suppl): S263–S273.

12. Silvain J, Cayla G, Collet JP, et al. Coronary stents: 30 years of medical progress[J]. Médecine Sciences: M/S, 2014, 30(3): 303-310.

13. Fetterly KA, Mathew V, Lennon R, et al. Radiation dose reduction in the invasive cardiovascular laboratory: Implementing a culture and philosophy of radiation safety[J]. JACC Cardiovascular Interventions, 2012, 5(8): 866–873.

14. Einstein AJ, Berman DS, Min JK, et al. Patient-centered imaging: shared decision making for cardiac imaging procedures with exposure to ionizing radiation[J]. Journal of the American College of Cardiology, 2014, 63(15): 1480-1489.

15. Vano E, Escaned J, Vano-Galvan S, et al. Importance of a patient dosimetry and clinical follow-up program in the detection of radiodermatitis after long percutaneous coronary interventions[J]. CardioVascular and Interventional Radiology, 2013, 36(2): 330-337.

16. Bordoli SJ, Carsten CG, Cull DL, et al. Radiation safety education in vascular surgery training[J]. Journal of Vascular Surgery, 2014, 59(3): 860-864.

17. Kordolaimi SD, Salvara ALN, Antonakos I, et al. Comparative performance evaluation of a flat detector and an image intensifier angiographic system both used for interventional cardiology procedures in adult and pediatric patients[J]. Physica Medica, 2013, 29(2): 178-187.

18. Jolly SS, Cairns J, Niemela K, et al. Effect of radial versus femoral access on radiation dose and the importance of procedural volume: a substudy of the multicenter randomized RIVAL trial[J]. JACC: Cardiovascular Interventions, 2013,6(3):258–266.

19. Hetherington SL, Adam Z, Morley R, et al. Primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction: changing patterns of vascular access, radial versus femoral artery[J]. Heart (British Cardiac Society), 2009, 95(19):1612–1618.

20. Kim J, Seo D, Choi I, et al. Development of diagnostic reference levels using a real-time radiation dose monitoring system at a cardiovascular center in Korea[J]. Journal of Digital Imaging, 2015, 28(6): 684-694.

21. Balter S, Miller DL. Patient skin reactions from interventional fluoroscopy procedures[J]. American Journal of Roentgenology, 2014, 202(4): W335-W342.

22. Durán A, Hian SK, Miller DL, et al. A summary of recommendations for occupational radiation protection in interventional cardiology[J]. Catheterization and Cardiovascular Interventions, 2013, 82(1):29–42.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]