51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于超聲壓痕技術(shù)的兔眼角膜生物力學(xué)特性

Biomechanical properties of rabbit cornea based on ultrasonic indentation

作者: 田磊  韓為  秦曉  李林  王立科  張海霞 
單位:首都醫(yī)科大學(xué)附屬北京同仁醫(yī)院 北京同仁眼科中心 北京市眼科研究所;眼科學(xué)與視覺科學(xué)北京市重點(diǎn)實(shí)驗(yàn)室(北京 100730) 首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院(北京 100067) 首都醫(yī)科大學(xué)臨床生物力學(xué)應(yīng)用基礎(chǔ)研究北京市重點(diǎn)實(shí)驗(yàn)室(北京 100069) 香港理工大學(xué)生物醫(yī)學(xué)工程跨領(lǐng)域?qū)W部(香港 999077)
關(guān)鍵詞: 超聲壓痕技術(shù);  彈性模量;  眼內(nèi)壓;  眼角膜;  生物力學(xué) 
分類號(hào):R318.01
出版年·卷·期(頁碼):2019·38·2(159-165)
摘要:

目的 利用超聲壓痕技術(shù)探索兔眼角膜的生物力學(xué)特性。方法 選取7月齡新西蘭白兔眼球7只,制作完整角膜試樣并固定于人工前房上。用微量注射泵給人工前房注水改變前房內(nèi)的壓力,并用壓力傳感器測量;在不同前房壓力狀態(tài)下,利用超聲壓痕設(shè)備在角膜頂點(diǎn)位置進(jìn)行壓痕實(shí)驗(yàn),獲得力-位移曲線。研究角膜力學(xué)參數(shù)(彈性模量、滯回量等)與前房壓力的關(guān)系。結(jié)果 由角膜壓痕實(shí)驗(yàn)所得的力-位移曲線呈現(xiàn)非線性特點(diǎn)。前房內(nèi)壓力越大,角膜的力-位移曲線越陡峭。兔眼角膜的彈性模量隨前房壓力升高而增大,在前房壓力為7~45 mmHg范圍內(nèi),其數(shù)值范圍為0.30~1.55 MPa。隨前房壓力增大,角膜滯回量呈現(xiàn)線性上升趨勢(shì)。結(jié)論 基于超聲壓痕技術(shù)獲得的兔眼角膜彈性模量隨前房壓力呈線性增大,滯回量等角膜黏性特性參數(shù)與前房壓力也相關(guān)。

Objective The biomechanical properties of rabbit corneas in vitro were explored by ultrasonic indentation experiment. Metheds Seven eye balls of New Zealand white rabbit with 7-month-old were used and the corneas were fixed on an artificial anterior chamber. The pressure in the anterior chamber were changed by injecting or ejecting normal saline in the artificial anterior chamber by a microinjection pump, and the intraocular pressure in the chamber was measured in real time by a pressure sensor. Indentation experiment was performed on the corneal apex by the ultrasonic indentation device at different pressure states, and the relationships between corneal biomechanical parameters and intraocular pressure were studied. Results The force-displacement curves of cornea in loading and unloading process were nonlinear. The higher the intraocular pressure, the steeper the load-displacement curves. At the intraocular pressure range of 7 to 45 mmHg, corneal tangent modulus increased with pressure with the value ranging between 0.30 to 1.55 MPa. The amount of hysteresis indicated the energy consumption of the cornea during loading and unloading process, was related to the viscous of the cornea. The result showed that the greater the pressure, the greater the amount of hysteresis would be. Conclusions Ultrasonic indentation experiments show that the corneal tangent modulus increases linearly with intraocular pressure and the viscous parameters are related with intraocular pressure.

參考文獻(xiàn):

[1] Bao F, Geraghty B, Wang Q, et al. Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important [J]. Eye and Vision, 2016, 3(1): 18.

[2] 姜黎, 王勤美, 曾衍鈞. 角膜生物力學(xué)性能測量方法的研究進(jìn)展[J]. 眼科研究, 2009, 27(9): 824-828. 

Jiang L, Wang QM, Zen YJ. Current advance on corneal biomechanical parameters measurement[J]. Chinese Ophthalmic Research, 2009, 27(9): 824 -828.

[3] Elsheikh A, Anderson K. Comparative study of corneal strip extensometry and inflation test[J]. Journal of the Royal Society Interface, 2005, 2(3): 177-185.

[4] 劉志成, 張昆亞, 王玉慧.兔眼角膜生物力學(xué)特性的實(shí)驗(yàn)研究[J]. 中國醫(yī)學(xué)物理學(xué)雜志, 2003, 20(3): 189-192.

Liu ZC, Zhang KY, Wang YH. The experimental research on biomechanical properties of the rabbit's corneas[J]. Chinese Journal of Medical Physics, 2003, 20(3): 189-192.

[5] 姜黎, 包芳軍, 張東升, 等. 膨脹試驗(yàn)測定豬眼角膜生物力學(xué)參數(shù)的研究[J]. 醫(yī)用生物力學(xué), 2009, 24(2): 123-126.

Jiang L, Bao FJ, Zhang DS, et al. Determining the ex vivo biomechanical properties of porcine cornea with inflation test[J]. Journal of Medical Biomechanics, 2009, 24(2): 123-126.

[6] Boschetti F, Triacca V, Spinelli L, et al. Mechanical characterization of porcine corneas[J]. Journal of Biomechanical Engineering, 2012, 134(3): 031003.

[7] Labate C, Lombardo M, De Santo MP, et al. Multiscale investigation of the depth-dependent mechanical anisotropy of the human corneal stroma[J]. Investigative Ophthalmology & Visual Science, 2015, 56(6): 4053-4060.

[8] Khan MA, 郝蘊(yùn), 李貝,等. 眼反應(yīng)分析儀在角膜屈光手術(shù)中的應(yīng)用[J]. 中國醫(yī)療設(shè)備, 2017, 31(3):76-79.

Khan MA, Hao Y, Li B, et al. Application of ocular response analyzer in corneal refractive surgery[J]. Chinese Medical Devices, 2017, 31(3): 76-79.

[9] 陳昕妍, 秦曉, 張海霞, 等. 可視化角膜生物力學(xué)分析儀在眼科臨床中的應(yīng)用[J]. 中國醫(yī)療設(shè)備, 2018, 33(7): 101-106.

Chen XY, Qin X, Zhang HX, et al. Application of visual corneal biomechanical analyzer in ophthalmic clinic[J]. Chinese Medical Devices, 2018, 33(7): 101-106.

[10] Piero DP, Natividad A. Corneal biomechanics: a review[J]. Clinical and Experimental Optometry, 2015, 98(2): 107-116.

[11] Masetti O, Hug F, Bouillard K, et al. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging[J]. Journal of Biomechanics, 2012, 45(6): 978- 984.

[12] Deffieux T, Gennisson JL, Bousquet L, et al. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography[J]. Journal of Hepatology, 2015, 62(2): 317-324.

[13] Zheng YP, Mak AFT, Lue B. Objective assessment of limb tissue elasticity: development of a manual indentation procedure[J]. Journal of Rehabilitation Research & Development, 1999, 36(2): 71-85.

[14] Zheng YP, Choi YKC, Wong K, et al. Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system[J]. Ultrasound in Medicine & Biology, 2000, 26(3): 451-456.

[15] Zheng YP, Leung SF, Mak AFT. Assessment of neck tissue fibrosis using an ultrasound palpation system: a feasibility study[J]. Medical and Biological Engineering and Computing, 2000, 38(5): 497-502.

[16] Wang LK, Huang YP, Tian L, et al. Measurement of corneal tangent modulus using ultrasound indentation[J]. Ultrasonics, 2016, 71(9): 20-28. 

[17] 張海霞, 李林, 張昆亞, 等. 兔眼角膜生物力學(xué)特性的年齡相關(guān)性[J]. 醫(yī)用生物力學(xué), 2014, 29(3): 271- 275.

Zhang HX, Li L, Zhang KY, et al, Age-related changes in biomechanical properties of rabbit corneas[J]. Journal of Medical Biomechanics, 2014, 29(3): 271-275.

[18] 孫太鳳, 王慧枝, 穆晶, 等. 基于整體角膜膨脹實(shí)驗(yàn)對(duì)兔眼角膜參數(shù)的確定[J]. 北京生物醫(yī)學(xué)工程, 2016, 35(2): 191-197.

Sun TF, Wang HZ, Mu J, et al. Determining the biomechanical properties of rabbit cornea with inflation tests[J]. Beijing Biomedical Engineering, 2016, 35(2): 191-197.

[19] 郁繼國, 包芳軍, 俞阿勇, 等. 膨脹法加壓兔角膜前表面與后表面所測生物力學(xué)性能的比較[J]. 中華眼視光學(xué)與視覺科學(xué)雜志, 2012, 14(5): 294-299. 

Yu JG, Bao FJ, Yu AY, et al. Comparison of biomechanical properties obtained in an inflation test of pressurizing the corneal anterior and posterior surfaces in rabbit[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2012, 14(5): 294-299.

[20] Young WC, Budynas RG. Roark’s formulas for stress and strain[M]. New York: McGraw-Hill Companies, 2002.

[21] 連玲艷, 宋秀君, 張曉融. 正常兔角膜生物力學(xué)特性和參數(shù)的測定[J]. 中華實(shí)驗(yàn)眼科雜志, 2012, 30(4): 346-348. 

Lian LY, Song XJ, Zhang XR. Biomechanical parameter of normal rabbit cornea[J]. Chinese Journal of Experimental Ophthalmology, 2012, 30(4): 346-348.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]