51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
超聲零差K分布模型仿真研究

Simulation study on ultrasound homodyned-K distribution model

作者: 歐陽亞麗  周著黃  吳水才  崔博翔 
單位: 北京工業(yè)大學生命科學與生物工程學院(北京 100124) 長庚大學醫(yī)學院(中國臺灣桃園 33302)
關鍵詞: 零差K分布模型;  參數(shù)估計;  超聲背向散射信號;  包絡統(tǒng)計;  蒙特卡洛仿真 
分類號:R318.6;TP 391
出版年·卷·期(頁碼):2019·38·2(119-125)
摘要:

目的 零差K分布模型是最具有物理意義的超聲背向散射信號包絡統(tǒng)計分布模型,主要參數(shù)包括k(相干散射與彌漫散射的比值)和μ(有效散射子個數(shù)),但目前尚缺乏k、μ參數(shù)估計算法的系統(tǒng)對比研究,本文系統(tǒng)闡述零差K模型及其參數(shù)估算方法,并通過計算機仿真對比研究各類估算算法的性能。方法 利用蒙特卡洛仿真產生獨立同分布的超聲背向散射信號包絡樣本,利用零差K模型參數(shù)估算算法對k和μ參數(shù)進行估計,包括偶數(shù)階矩法(Dutt-Greenleaf法和Prager-Berman法)、小數(shù)階矩法、RSK法和XU統(tǒng)計法;最后,進行10組仿真實驗,每組進行1 000次仿真,對比分析各類估計算法的性能,包括排除次數(shù)、估算誤差和運行時間等參數(shù)。結果 Dutt-Greenleaf法、Prager-Berman法、小數(shù)階矩法、RSK法和XU統(tǒng)計法的平均排除次數(shù)分別為474、915、672、0、0;參數(shù)k平均估算誤差分別為31.2%、55.8%、122.2%、12.8%、20.6%;參數(shù)μ平均估算誤差分別為23.2%、41.9%、16.3%、6.8%、3.0%;平均運行時間分別為0.72 s、0.85 s、1.38 s、298.34 s、109.53 s。結論 在零差K分布模型參數(shù)估計方法中,(1) Dutt-Greenleaf法、Prager-Berman法和小數(shù)階矩法的排除次數(shù)較高,RSK法和XU統(tǒng)計法基本無排除;(2) RSK法的k平均估算誤差最小,XU統(tǒng)計法的μ平均估算誤差最小;(3) Dutt-Greenleaf法、Prager-Berman法、小數(shù)階矩法的平均運行時間遠少于RSK法和XU統(tǒng)計法。

Objective The homodyned-K (HK) distribution model is of the most physical meaning for ultrasound backscattered signal envelopes.The HK model parameters include k ( ratio of coherent scattering to diffuse scattering) and μ ( effective scatterer number).However,a systematic comparison of k and μ estimation methods is not available.The purpose is to introduce the HK model and its parameter estimation methods,and to compare the performance of each estimation algorithm by using computer simulations. Methods Monte Carlo simulation was used to generate independent and identically distributed ( i.i.d ) ultrasound backscattered envelope samples that follow the HK distribution.These i.i.d samples were then used for estimating the HK model parameters k and μ with different estimationalgorithms,including the even moment estimator ( the Dutt-Greenleaf and the Prager-Berman estimators) ,the fractional moment estimator, the RSK estimator, and the XU statistics estimator.Ten groups of simulation experiments were conducted.Each group was run for 1 000 times.The performance of each estimation algorithm was evaluated in terms of times of rejection,estimation error,and running time.Results The Dutt-Greenleaf, Prager-Berman,fractional moment,RSK,and XU statistics estimators yielded,respectively,(1) a mean time of rejection as 474,915, 672, 0, 0; ( 2 ) a mean estimation error for k as 31.2%, 55.8%,122.2%,12.8%,20.6%; (3) a mean estimation error for μ as23.2%,41.9%,16.3%,6.8%,3.0%; ( 4) a mean running time as 0.72 s,0.85 s,1.38 s,298.34 s,109.53 s.  Conclusions Among the five estimation methods of HK model parameters,(1) the Dutt-Greenleaf,the Prager-Berman and the fractional moment estimators had a large number of rejection,yet the RSK and the XU statistics estimators rarely did; (2) the RSK estimator yielded the minimum average estimation error for estimating k, and the XU statistics estimator produced the minimum average estimation error for estimating μ; (3) the running times of the Dutt-Greenleaf,the Prager-Berman and the fractional moment estimators were far less those of the RSK and the XU statistics estimators.

參考文獻:

[1]Mamou J,Oelze ML. Quantitative ultrasound in soft tissues[M].Heidelberg:Springer,2013.

[2]Oelze ML,Mamou J. Review of quantitative ultrasound:Envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,2016,63(2):336-351.

[3]Han M,Wan J,Zhao Y,et al. Nakagamim parametric imaging for atherosclerotic plaque characterization using the coarse to-fine method[J].Ultrasound in Medicine and Biology,2017,43( 6):1275-1289.

[4]Tsui PH,Zhou Z,Lin YH,et al. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues [J].PLoS One, 2017,12(8):e0181789.

[5]Destrempes F, Cloutier G. A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope[J].Ultrasound in Medicine and Biology,2010,36(7):1037-1051.

[6]Tsui PH, Wan YL, Tai DI, et al. Effects of estimators on ultrasound Nakagami imaging in visualizing the change in the backscattered statistics from a Rayleigh distribution to a pre-Rayleigh distribution [J].Ultrasound in Medicine and Biology,2015,41(8):2240-2251

[7]魏穎, 林江莉,彭玉蘭,等. 利用零差 K 分布模型參數(shù)識別乳腺腫瘤[J].中國醫(yī)學影像技術,2006,22(8):1266-1268.

Wei Y,Lin JL,Peng YL,et al. Use of homodyned K-distribution parameter for characterizing breast neoplasms[J].Chinese Journal of Medical Imaging Technology, 2006,22(8):1266-1268.

[8]Byra M, Nowicki A, Wróblewska Piotrzkowska H, et al. Classification of breast lesions using segmented quantitative ultrasound maps of homodyned K distribution parameters[J].Medical Physics,2016,43(10):5561-5569.

[9]Hao X,Bruce CJ,Pislaru C,et al. Characterization of reperfused infarcted myocardium from high-frequency intracardiac ultrasound imaging using homodyned K distribution[J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002,49 (11):1530-1542.

[10]Mamou J, Coron A, Oelze ML, et al. Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes[J].Ultrasound in Medicine and Biology,2011,37(3):345-357.

[11]Ghoshal G, Lavarello RJ, Kemmerer JP, et al. Ex vivo study of quantitative ultrasound parameters in fatty rabbit livers[J].Ultrasound in Medicine and Biology,2012,38(12):2238-2248.

[12]Jakeman E,Tough RJA. Generalized K distribution: a statistical model for weak scattering[J].Journal of the Optical Society of America A,1987,4(9):1764-1772.

[13]Dutt V,Greenleaf JF. Ultrasound echo envelope analysis using a homodyned K distribution signal model[J].Ultrasonic Imaging,1994,16(4):265-287.

[14]Prager RW, Gee AH, Treece GM, et al. Decompression and speckle detection for ultrasound images using the homodyned k-distribution[J].Pattern Recognition Letters,2003,24 ( 4 - 5) : 705-713.

[15]Prager RW, Gee AH, Treece GM, et al. Analysis of speckle in ultrasound images using fractional order statistics and the homodyned kdistribution[J].Ultrasonics, 2002, 40(1- 8):133-137.

[16]Hruska DP, Oelze ML. Improved parameter estimates based on the homodyned K distribution[J].IEEE Transactions on

Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(11):2471-2481.

[17]Destrempes F, Porée J, Cloutier G. Estimation method of the homodyned Kdistribution based on the mean intensity and two logmoments[J].SIAM Journal on Imaging Sciences, 2013, 6(3):1499-1530.

[18]Cristea A. Ultrasound tissue characterization using speckle statistics[D].Lyon:Universit Claude Bernard Lyon 1,2015.


服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]