51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
輔助骨盆骨折復(fù)位的彈性牽引裝置實(shí)驗(yàn)研究

Experimental study on elastic traction device to assist reduction of pelvic fracture

作者: 許珂  朱罡  王豫  樊瑜波  吳新寶  王軍強(qiáng)  趙春鵬  孫旭 
單位:北京航空航天大學(xué)生物與醫(yī)學(xué)工程學(xué)院(北京 100191) 北京航空航天大學(xué)生物醫(yī)學(xué)工程高精尖創(chuàng)新中 心(北京100083) 北京積水潭醫(yī)院(北京 100035)
關(guān)鍵詞: 骨盆骨折;  骨折復(fù)位力;  彈性牽引;  骨盆復(fù)位;  生物力學(xué) 
分類號:R318.6
出版年·卷·期(頁碼):2019·38·2(126-133)
摘要:

目的 提出彈性牽引理論,即通過下肢彈性牽引裝置平衡骨盆周圍主要肌肉的阻力,利用彈性牽引裝置中彈性體在牽引過程中產(chǎn)生的彈性形變提升醫(yī)生復(fù)位操作過程中的靈活性,以此解決現(xiàn)有骨折復(fù)位機(jī)器人無法兼顧大負(fù)載與操作靈活性要求,并在搭建的骨盆骨折復(fù)位過程中肌肉約束力模擬平臺上進(jìn)行重復(fù)復(fù)位實(shí)驗(yàn),以探究彈性牽引對骨盆骨折復(fù)位力及操作靈活性影響,為骨盆骨折復(fù)位手術(shù)機(jī)器人開發(fā)提供實(shí)驗(yàn)依據(jù)。方法 基于肌肉彈性體簡化條件,搭建了模擬骨盆骨折復(fù)位過程中肌肉約束力的實(shí)驗(yàn)平臺,模擬骨盆損傷狀態(tài)下肌肉在復(fù)位過程中產(chǎn)生的阻力,并利用該模擬平臺開展驗(yàn)證實(shí)驗(yàn),測試比較了0 kg、5 kg、10 kg不同下肢彈性牽引條件下復(fù)位實(shí)驗(yàn)過程中復(fù)位力曲線,并對復(fù)位操作過程中復(fù)位力進(jìn)行單因素誤差分析及LSD事后多重檢驗(yàn)分析,以此分析下肢彈性牽引裝置對復(fù)位力大小的影響。最后,將患側(cè)骨盆分別沿x、y方向平移3 cm,分析彈性牽引對平移操作靈活性的影響。結(jié)果彈性牽引可以顯著減小復(fù)位操作力大小。在復(fù)位維持階段,5 kg和10 kg彈性牽引使維持復(fù)位位置所需的把持力分別減小32.99%和60.85%(1號把持螺釘),以及31.06%和62.72%(2號把持螺釘)。在操作靈活性實(shí)驗(yàn)中,彈性牽引輔助下操作力相較于無彈性牽引時(shí)平均減小60%以上。結(jié)論 本研究初步驗(yàn)證了彈性牽引對輔助骨盆骨折復(fù)位的有效性,下肢彈性牽引可以有效減小復(fù)位操作過程中復(fù)位力的大小,并兼顧操作靈活性,同時(shí)有利于正確復(fù)位位置的穩(wěn)定維持。

Objective  A new concept of elastic traction is proposed, which uses elastic traction to balance the force of soft tissues such as muscles, and the elastic deformation of the elastic traction device ensures the complex operations during reduction, which can meet the requirements of both large load and operation flexibility that the existing fracture reduction robot can not meet. Repeated pelvic reduction experiments are also carried out on the experimental platform of muscle force in the reduction process of pelvic fracture in order to explore the effect of elastic traction on reduction force and operation flexibility of pelvic fracture.  Methods  Based on the theory of simplified condition of muscle, the experimental platform of muscle force in the reduction process of pelvic fracture is set up to simulate the force of muscles during the reduction while pelvic fracture. We use the simulation platform to carry out the verification experiment, and record the reduction force curve under different conditions of lower limb elastic traction. And the single factor error analysis and LSD multiple test analysis of reset force during reset operation are carried out. In this way, the effect of elastic traction device for lower limb on reduction force is analyzed. Then, the affected pelvis is moved 3 cm along the direction of x and y, and the force curve is recorded to analyze the effect of elastic traction on the flexibility of translation. Results  The results of single factor error analysis and LSD multiple test show that elastic traction can significantly reduce the reduction force. Besides, the maintenance force of the No.1 reduction handle screw is reduced by 32.99% and 60.85%,and the force of the No.2 holding screw is also reduced by 31.06% and 62.72%. In the experiment of operation flexibility, the operating force under the assistance of elastic traction is reduced by more than 60% compared with that under the condition of non-elastic traction. Conclusions  This study preliminarily verifies the effectiveness of elastic traction. Lower limb elastic traction can effectively reduce the reduction force in the process of reduction, maintain the flexibility of operation, and do not affect the complex operation during reductions. At the same time, it helps to maintain the correct reset position.

參考文獻(xiàn):

[1]Collinge C, Coons D, Tornetta P, et al. Standard multiplanar fluoroscopy versus a fluoroscopically based navigation system for the percutaneous insertion of iliosacral screws: a cadaver model [J].Journal of Orthopaedic and Trauma,2005,19(4):254-258.

[2]Tachibana T,Yokoi H, Kirita M, et al. Instability of the pelvic ring and injury severity can be predictors of death in patients with pelvic ring fractures: a retrospective study[J].Journal of Orthopaedics and Traumatology,2009,10(2):79-82.

[3]Miller PR,Moore PS, Mansell E, et al. External fixation or arteriogram in bleeding pelvic fracture: initial therapy guided by markers of arterial hemorrhage[J].Journal of Trauma,2003,54(3):437-443.

[4]Pereira SJ,O’Brien DP, Luchette FA, et al. Dynamic helical computed tomography scan accurately detects hemorrhage in patients with pelvic fracture[J].Surgery,2000,128(4):678-685.

[5]Elabjer E,Nikolic'V,Matejcic'A,et al. Analysis of muscle forces acting on fragments in pelvic fractures[J].Collegium Antropologicum,2009,33(4):1095-1101.

[6]Kim WY,Ko SY,Park JO,et al. 6-DOF force feedback control of robot-assisted bone fracture reduction system using double F/Tsensors and adjustable admittances to protect bones against damage[J].Mechatronics,2016,35:136-147.

[7]Suero EM,Hartung T, Westphal R, et al. Improving the human-robot interface for telemanipulated robotic long bone fracture reduction: Joystick device vs. haptic manipulator[J].International Journal of Medical Robotics and Computer Assisted Surgery,2018,14(1):e1863.

[8]Wang L,Wang T, Li C, et al. Physical symmetry and virtual plane-based reduction reference: a preliminary study for robot-assisted pelvic fracture reduction[J].Journal of Mechanics in Medicine and Biology,2016,16(8):1640014.

[9]Lin H,Ma XL,Wang MY,et al. Robotic assisted pelvis fracture reduction[C]//CAOS International Conference.Osaka,Japan:CAOS,2016.

[10]Marcucci L,Reggiani C, Natali AN, et al. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers[J].Biomechanics and Modeling in Mechanobiology,2017,16(6):1833-1843.

[11]Cleworth DR,Edman KA. Changes in sarcomere length during isometric tension development in frog skeletal muscle[J].Journal of Physiology,1972,227(1):1-17.

[12]Virgilio KM,Martin KS,Peirce SM, et al. Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility[J].Interface Focus,2015,5(2):20140080.

[13]Phillips AT,Pankaj P,Howie CR,et al. Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions[J].Medical Engineering & Physics,2007,29(7):739-748.

[14]Tse KM,Robinson D,Franklyn M, et al. Parametric analysis on pelvic injury in an underbelly blast:a finite element study [C]//The 16th International Conference on Biomedical Engineering. Singapore:ICBME,2016.

[15]Bishop JA,Jr RM. Osseous fixation pathways in pelvic and acetabular fracture surgery: osteology, radiology, and clinical applications[J].The Journal of Trauma and Acute Care Surgery, 2012,72(6):1502-1509.

[16]徐九峰,韓巍,王軍強(qiáng),等.骨盆復(fù)位機(jī)器人試驗(yàn)研究[J] .中國 骨與關(guān)節(jié)外科雜志,2015,8(3):242-245.

Xu JF, Han W, Wang JQ, et al. Pelvic reduction robot: an experimental study [J].Chinese Journal of Bone and Joint Surgery,2015,8(3) :242-245

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]