51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
低氧微環(huán)境對(duì)P(3HB-co-4HB)與小鼠骨髓間充質(zhì)干細(xì)胞共培養(yǎng)形成心肌補(bǔ)片影響的實(shí)驗(yàn)研究

Experimental study on the effect of hypoxia microenvironment on the co-culture of P(3HB-co-4HB) and mouse bone marrow mesenchymal stem cells to form myocardial patch

作者: 田琨  穆軍升  伯平  周帆 
單位:首都醫(yī)科大學(xué)附屬北京安貞醫(yī)院心臟外科,北京市心肺血管疾病研究所(北京 100029) 解放軍總醫(yī)院第三醫(yī)學(xué)中心超聲科(北京 100039)
關(guān)鍵詞: 低氧微環(huán)境;  P(3HB-co-4HB);  心肌補(bǔ)片;  心肌梗死 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2019·38·3(227-234)
摘要:

目的 探究低氧微環(huán)境對(duì)小鼠骨髓間充質(zhì)干細(xì)胞與P(3HB-co-4HB)材料共培養(yǎng)形成心肌補(bǔ)片的影響,為細(xì)胞移植術(shù)治療心肌梗死提供一種更有效的心肌補(bǔ)片。方法 全骨髓培養(yǎng)法提取小鼠骨髓間充質(zhì)干細(xì)胞(mMSCs),取5代mMSCs流式細(xì)胞術(shù)鑒定表面抗原。將聚3羥基丁酸酯-co-4羥基丁酸酯[3-hydroxybutyrate-co-4-hydroxybutyrate,P(3HB-co-4HB)]與小鼠骨髓間充質(zhì)干細(xì)胞(mouse bone marrow mesenchymal stem cells,mMSCs)共培養(yǎng)制作成細(xì)胞補(bǔ)片,隨機(jī)分為常氧組和低氧組,每組各10個(gè)樣本,0、12、24 h分別用CCK-8法測(cè)定細(xì)胞增殖情況;掃描電子顯微鏡(scanning electron microscope,SEM)觀察補(bǔ)片存活、黏附、生長(zhǎng)情況。加入誘導(dǎo)劑5氮雜胞苷2周后,免疫熒光檢測(cè)兩組心肌肌鈣蛋白T(cTnT)的表達(dá)情況。結(jié)果 在共培養(yǎng)24 h后,CCK-8法測(cè)定低氧組OD值(0.349±0.038)顯著大于常氧組(0.308±0.025)(n=10,P<0.05),掃描電子顯微鏡觀察到低氧組P(3HB-co-4HB)材料上細(xì)胞數(shù)量更多,細(xì)胞與材料之間的黏附牢固,細(xì)胞形態(tài)正常。免疫熒光顯示低氧組cTnT表達(dá)比常氧組更加顯著。結(jié)論 相對(duì)于常氧條件,低氧微環(huán)境可促進(jìn)骨髓間充質(zhì)干細(xì)胞在P(3HB-co-4HB)材料上的黏附、存活、增殖、分化,形成一種更有效的心肌補(bǔ)片。

Objective To investigate the effect of hypoxic microenvironment on the co-culture of mouse bone marrow mesenchymal stem cells with P(3HB-co-4HB) material to form a myocardial patch, and to provide a more effective myocardial for cell transplantation in the treatment of myocardial infarction. Methods Mouse bone marrow mesenchymal stem cells (mMSCs) were extracted by whole bone marrow culture. The surface antigens were identified by flow cytometry of 5 generations of mMSCs. 3-hydroxybutyrate-co-4-hydroxybutyrate (P(3HB-co-4HB)) and bone marrow mesenchymal stem cells (bone marrow mesenchymal stem cells, mMSCs) co-cultured into cell supplements, randomly divided into normoxia group and hypoxia group, each group of 10 samples, 0, 12, 24 hours to determine cell proliferation by CCK-8 method; scanning electron microscope (scanning Electron microscope (SEM) was used to observe the survival, adhesion and growth of the patch. Two weeks after the addition of the inducer 5-azacytidine, the expression of cardiac troponin T (cTnT) was detected by immunofluorescence. Results  After co-culture for 24 hours, the OD value of the hypoxic group measured by CCK-8 method (0.349±0.038) was significantly higher than that of the normoxic group (0.308±0.025) (n=10, P<0.05), which was observed by scanning electron microscopy. The number of cells in the oxygen group P(3HB-co-4HB) material is more, the adhesion between the cells and the material is firm, and the cell morphology is normal. Immunofluorescence showed that the expression of cTnT in the hypoxic group was more significant than in the normoxic group. Conclusions Compared with normoxic conditions, hypoxic microenvironment can promote the adhesion, survival, proliferation and differentiation of bone marrow mesenchymal stem cells on P(3HB-co-4HB) materials, and form a more effective myocardial patch.

參考文獻(xiàn):

[1]Dawn B, Tiwari S, Kucia MJ, et al. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction.[J]. Stem Cells, 2010, 26(6):1646-1655.

[2]Tatsumi T, Ashihara E, Yasui T, et al. Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction[J]. Circulation Journal, 2007, 71(8):1199-1207.

[3]Madonna R, Petrov L, Teberino MA, et al. Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction[J]. Cardiovascular Research, 2015, 108(1):39-49.

[4] Martens A, Rojas SV, Baraki H, et al. Substantial early loss of induced pluripotent stem cells following transplantation in myocardial infarction.[J]. Artificial Organs, 2015, 38(11):978-984.

[5]Niu H, Mu J, Zhang J, et al. Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration.[J]. Journal of Materials Science Materials in Medicine, 2013, 24(6):1535-1542. 

[6]Ma YX, Mu JS, Zhang JQ, et al. Myocardial Patch Formation by Three-Dimensional 3-Hydroxybutyrate-co-4-Hydroxybutyrate Cultured with Mouse Embryonic Stem Cells[J]. Journal of Biomaterials & Tissue Engineering, 2016, 6(8):629-634.

[7]Miettinen JA, Salonen RJ, Ylitalo K, et al. The effect of bone marrow microenvironment on the functional properties of the therapeutic bone marrow-derived cells in patients with acute myocardial infarction[J]. Journal of Translational Medicine, 2012, 10(1):66-66.

[8] Assmus B , Britten MB , et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial[J]. Guangxi Medical Journal, 2004, 44(8):1690-1699.

[9] Li RK, Weisel RD, Mickle DA G, et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction [J]. Journal of Thoracic & Cardiovascular Surgery, 2000, 119(1):62-68.

[10]Patel AN, Geffner L, Vina RF, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study.[J]. Journal of Thoracic & Cardiovascular Surgery, 2005, 130(6):1631-1638.

[11] Yau TM , Tomita S , Weisel RD , et al. Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells[J]. Annals of Thoracic Surgery, 2003, 75(1):169-177.

[12]Sakai T, Li RK, Weisel RD, et al. Autologous heart cell transplantation improves cardiac function after myocardial injury.[J]. Annals of Thoracic Surgery, 1999, 68(6):2074-2080.

[13]Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats.[J]. Journal of Applied Physiology, 2002, 92(1):288-296.

[14] Taubenberger AV, Bray LJ, Haller B, et al. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.[J]. Acta Biomaterialia, 2016, 36:73-85.

[15] Jung JP , José V Moyano, Collier JH . Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices[J]. Integrative Biology, 2011, 3(3):185-196.

[16] Tibbitt MW, Anseth KS. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture[J]. Biotechnology & Bioengineering, 2010, 103(4):655-663.    

[17]Justice BA, Badr NA, Felder RA. 3D cell culture opens new dimensions in cell-based assays.[J]. Drug Discovery Today, 2009, 14(1):102-107

[18] Saito Y, Nakamura S, Hiramitsu M, et al. Microbial synthesis and properties of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate)[J]. Polymer International, 2015, 39(3):169-174.

[19] Sun XM, Zhong LH, Lan XP, et al. The Compatibility of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and Thermoplastic Polyurethane Blends[J]. Advanced Materials Research, 2013, 815:552-557.

[20] Powers DE, Millman JR, Huang RB, et al. Effects of oxygen on mouse embryonic stem cell growth, phenotype retention, and cellular energetics[J]. Biotechnology & Bioengineering, 2010, 101(2):241-254.

[21]Kurosawa H, Kimura M, Noda T, e`t al. Effect of oxygen on in vitro, differentiation of mouse embryonic stem cells[J]. Journal of Bioscience & Bioengineering, 2006, 101(1):26-30.

[22]Choi JW, Kim KE, Lee CY, et al. Alterations in Cardiomyocyte Differentiation-Related Proteins in Rat Mesenchymal Stem Cells Exposed to Hypoxia[J]. Cellular Physiology & Biochemistry, 2016, 39(4):1595-1607.

[23]Niebruegge S, Bauwens CL, Peerani R, et al. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor.[J]. Biotechnology and Bioengineering, 2009, 102(2):493-507.

[24] Khan M, Kwiatkowski P, Rivera BK, et al. Oxygen and oxygenation in stem-cell therapy for myocardial infarction[J]. Life Sciences, 2010, 87(9):269-274.

[25] Wei R, Yang J, Gao M, et al. Infarcted cardiac microenvironment may hinder cardiac lineage differentiation of human embryonic stem cells[J]. Cell Biology International, 2016, 40(11):1235-1246.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]