51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于 Hurst 指數(shù)的腦膠質(zhì)瘤分級方法

Grading method of gliomas based on Hurst index

作者: 楊宇軒  陶玲  錢志余 
單位:南京航空航天大學自動化學院(南京 211106)
關(guān)鍵詞: 腦膠質(zhì)瘤;  腫瘤分級;  復(fù)雜度;  赫斯特指數(shù)   
分類號:R318.04
出版年·卷·期(頁碼):2019·38·3(271-276)
摘要:

目的 基于復(fù)雜度分析對膠質(zhì)瘤患者的磁共振大腦靜息態(tài)數(shù)據(jù)進行描述,尋找基于復(fù)雜度分析的腫瘤分級的客觀指標? 方法 基于復(fù)雜度赫斯特( Hurst)指數(shù)分析方法對被試者大腦腫瘤 fMRI影像的功能信息進行提取和分析,并對腫瘤進行分級研究? 首先基于 MRIcro 軟件對患者腫瘤區(qū)域?對側(cè)正常區(qū)域以及正常對照組的腫瘤對應(yīng)區(qū)域進行提取;接著對提取出來的區(qū)域進行 Hurst 指數(shù)計算;然后對腫瘤區(qū)域及其對側(cè)正常區(qū)域的 Hurst 指數(shù)值進行統(tǒng)計分析,對腫瘤區(qū)域及對照組同區(qū)域的 Hurst 指數(shù)值進行統(tǒng)計分析;最后將 29 例腫瘤患者樣本按照病理等級進行分組,其中一級腫瘤患者 10 例,二級腫瘤患者 7 例,三?四級腫瘤患者各 6 例,對不同組別的 Hurst 指數(shù)進行雙樣本統(tǒng)計分析? 結(jié)果 被試腫瘤區(qū)域的 Hurst 指數(shù)值與腫瘤等級成正比關(guān)系,腫瘤等級越高 Hurst 指數(shù)值越大? 統(tǒng)計分析表明不同級別腫瘤區(qū)域的 Hurst 指數(shù)差異具有統(tǒng)計學意義? 低級別腫瘤 Hurst 指數(shù)范圍為 0.6381~0.6737,高級別腫瘤 Hurst 指數(shù)范圍為 0.751 4 ~ 0.819 4? 結(jié)論 Hurst 指數(shù)分析方法可以區(qū)分低級別和高級別膠質(zhì)瘤,可以為更細致的膠質(zhì)瘤的等級劃分提供幫助?

Objective To describe the MRI brain rest data of glioma patients based on complexity analysis,and to find objective indicators of tumor grading based on complexity analysis Methods Based on the complexity of the Hurst index analysis method,the functional information of fMRI images of brain tumors was extracted and analyzed,and the tumors were graded. Firstly,based on the MRIcro software,the correspondingregions of the tumor in the patient’ s tumor region,contralateral normal region,and normal control group were extracted;then the Hurst index was calculated for the extracted region;then the Hurst index value of the tumor region and its contralateral normal region was performed. Statistical analysis was performed on the Hurst index values in the same region of the tumor region and the control group. Finally,29 tumor patients were grouped according to pathological grade,including 10 primary tumor patients,7 secondary tumor patients,6 third? and fourth?grade tumor patients, and two?sample statistical analysis was performed on the Hurst index of different groups. Results The Hurst index value of the tumor region was proportional to the tumor grade. The higher the tumor grade was, the higher the Hurst index value was. The statistical analysis showed that the Hurst index of the tumor areas at different levels was significantly different. The Hurst index ranged from 0.6381 to 0.6737 in low?grade tumors,and from 0.7514 to 0.8194 in high?grade tumors. Conclusions The Hurst index analysis method can distinguish between low?grade and high?grade gliomas,and can provide help for more detailed classification of gliomas.

參考文獻:

[ 1 ] 趙明,付曠,郭麗麗,等. 定量動態(tài)增強 MRI 在腦高低級別膠質(zhì)瘤術(shù)前病理分級中的應(yīng)用研究 [ J]. 中國實驗診斷學,
2016,20(1):42-44.

Zhao M,Fu K,Guo LL,et al.Evaluation of T1?DCE MRI for the preoperative pathological evaluation of Tumor grade in brain
glioma [ J]. Chinese Journal of Laboratory Diagnosis, 2016, 20(1):42-44.
[ 2 ] Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system[ J]. Acta Neuropathologica,2007,114 (2): 97-109.
[ 3 ] 范兵,杜華睿,王霄英,等. MRI 動態(tài)增強掃描定量參數(shù)對腦膠質(zhì)瘤分級診斷價值的研究[ J]. 放射學實踐,2014,29(8):
893-895.

Fan B,Du HR,Wang XY,et al. Dynamic enhanced MR scanning with volume transfer coefficient ( Ktrans ) in the evaluation of
histopathologic grading of cere?bral glioma [ J ]. Radiologic Practice,2014,29(8): 893-895.
[ 4 ] 張楠,楊本強. 腦膠質(zhì)瘤分級診斷的磁共振研究新進展[ J].磁共振成像,2017,8(1):67-71.
Zhang N,Yang BQ. New approaches of magnetic resonance on the evaluation of brain glioma grading [ J ]. Chinese Journal of Magnetic Resonance Imaging,2017,8(1):67-71.
[ 5 ] Bertolaccini M, Bussolati C, Padovini G. A nonlinear filtering technique for the identification of biological signals [ J]. IEEE transactions on bio?medical engineering,1978,25(2):159-165.
[ 6 ] Smith RX, Yan L, Wang DJJ. Multiple time scale complexity analysis of resting state FMRI [ J]. Brain Imaging & Behavior,
2014,8(2):284-292.
[ 7 ] Wang Z,Li Y,Childress AR,et al. Brain entropy mapping using fMRI[J]. Plos One,2014,9(3): e89948.
[ 8 ] 張雅檬,陶玲,錢志余,等. 腦腫瘤患者大腦復(fù)雜度的 fMRI 研究[J].北京生物醫(yī)學工程,2015,34(5):441-446.
Zhang YM,Tao L,Qian ZY,et al. A resting state fMRI study of brain complexity in cerebral tumor patients [ J ]. Beijing
Biomedical Engineering,2015,34(5):441-446.
[ 9 ] 白玲,景斌,葉德榮.大腦靜息態(tài) fMRI 信號復(fù)雜度的年齡效應(yīng)研究[J]. 北京生物醫(yī)學工程,2015,34(1):18-23.
Bai L, Jing B, Ye DR. Age effects on the complexity of brain endogenous oscillations in fMRI [ J ]. Beijing Biomedical Engineering,2015,34(1):18-23.
[10] Bernan J. Statistics for long?memory processes [M]. Boca Raton: Chapman & Hall / CRC,1994.
[11] Staff TPO. Correction: nonlinear complexity analysis of brain fMRI signals in Schizophrenia [ J ]. Plos One, 2014, 9 ( 8 ):
e95146.
[12] Maxim V, Sendur L, Fadili J, et al. Fractional gaussian noise, functional MRI and Alzheimer’s disease[J]. Neuroimage,2005, 25(1):141-158.
[13] Lai MC, Lombardo MV, Chakrabarti B, et al. A shift to randomness of brain oscillations in people with autism [ J ]. Biological Psychiatry,2010,68(12):1092-1099.
[14] Hahn T,Dresler T,Ehlis AC,et al. Randomness of resting?state brain oscillations encodes Gray ’ s personality trait [ J ]. Neuroimage,2012,59(2):1842-1845.
[15] Goldberger AL,Amaral LA,Hausdorff JM,et al. Fractal dynamics in physiology: alterations with disease and aging [ J ]

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]