51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
脂肪組織壓縮實(shí)驗(yàn)中摩擦系數(shù)對(duì)力學(xué)響應(yīng)的影響

Effect of friction coefficient on mechanical response in compression test of adipose tissue

作者: 崔世海  段海彤  李海巖  賀麗娟  呂文樂  阮世捷 
單位:天津科技大學(xué)機(jī)械工程學(xué)院(天津 300222)
關(guān)鍵詞: 脂肪組織;  壓縮實(shí)驗(yàn);  有限元仿真;  材料本構(gòu);  摩擦系數(shù) 
分類號(hào):R318.01
出版年·卷·期(頁碼):2019·38·4(345-352)
摘要:

目的 針對(duì)當(dāng)前摩擦力對(duì)脂肪組織無約束壓縮實(shí)驗(yàn)結(jié)果影響的不確定性,研究壓縮實(shí)驗(yàn)中合適的摩擦系數(shù)設(shè)置及適用于模擬脂肪組織生物力學(xué)響應(yīng)的材料本構(gòu)模型。方法 構(gòu)建低應(yīng)變率(0.2 s-1)和中應(yīng)變率(20 s-1)下的脂肪組織有限元模型,分別應(yīng)用LS-DYNA中常用于模擬脂肪組織的線性黏彈性材料本構(gòu)、Mooney-Rivlin超彈性材料本構(gòu)、Ogden超彈性材料本構(gòu)、軟組織材料本構(gòu),在不同摩擦系數(shù)下進(jìn)行無約束壓縮實(shí)驗(yàn),分析不同摩擦系數(shù)及本構(gòu)模型對(duì)接觸力大小的影響。結(jié)果 4種材料本構(gòu)模型在低、中應(yīng)變率下,輸出的接觸力均與摩擦系數(shù)呈正相關(guān),有摩擦?xí)r的接觸力比無摩擦?xí)r的接觸力大50%左右。中應(yīng)變率下脂肪組織的力學(xué)響應(yīng)對(duì)摩擦系數(shù)的靈敏度比低應(yīng)變率下的更高,且不同材料本構(gòu)模型輸出的接觸力差異顯著。結(jié)論 在脂肪組織無約束壓縮實(shí)驗(yàn)中,靜摩擦系數(shù)取0.1,動(dòng)摩擦系數(shù)取0.05是合理的,在低、中應(yīng)變率下Ogden超彈性材料本構(gòu)能夠良好地反映脂肪組織的生物力學(xué)響應(yīng)。

Objective In view of the uncertainty of the effect of friction on the experimental results of unconstrained compression of adipose tissue, the appropriate friction coefficient setting in compression experiments and the material constitutive model for simulating the biomechanical response of adipose tissue are studied. Methods The finite element (FE) models of adipose tissue used for low strain rate (0.2 s-[1]) and medium strain rate (20 s-1) were developed. The unconstrained compression tests of adipose tissue under different friction coefficient were simulated by LS-DYNA code using the developed FE models with different constitutive models, such as linear viscoelastic material constitutive of adipose tissue, the Mooney-Rivlin hyperelastic material constitutive, Ogden hyperelastic constitutive materials, soft tissue material constitutive. The influence of different friction coefficients and constitutive models on the contact force was analyzed. Results Under the low and medium strain rate, the contact force with four kinds of material constitutive models obtained from the simulations was positively correlated with the friction coefficient, and the contact force with friction was more than 50% higher than that without friction. The mechanical response of adipose tissue under medium strain rate was more sensitive to friction coefficient than that under low strain rate. Furthermore, the contact force of the constitutive models of different materials was significantly different. Conclusions For the unconstrained adipose tissue compression test, the static friction coefficient of 0.1 and the kinetic friction coefficient of 0.05 are reasonable in the simulation. Under low and medium strain rate, Ogden hyperelastic constitutive models can well reflect the biomechanical response of adipose tissue.

參考文獻(xiàn):

[1] van Houten EEW, Doyley MM, Kennedy FE, et al. Initial in vivo experience with steady‐state subzone‐based MR elastography of the human breast[J]. Journal of Magnetic Resonance Imaging, 2003, 17(1): 72-85.

[2] Gefen A, Dilmoney B. Mechanics of the normal woman's breast[J]. Technology and Health Care, 2007, 15(4): 259-271.

[3] Qiu S, Zhao X, Chen J, et al. Characterizing viscoelastic properties of breast cancer tissue in a mouse model using indentation[J]. Journal of Biomechanics,2018,69: 81-89.

[4] Gefen A, Megido-Ravid M, Itzchak Y. In vivo biomechanical behavior of the human heel pad during the stance phase of gait[J]. Journal of Biomechanics, 2001, 34(12): 1661-1665.

[5] Weaver JB, Doyley M, Cheung Y, et al. Imaging the shear modulus of the heel fat pads[J]. Clinical Biomechanics, 2005, 20(3): 312-319.

[6] Suzuki R, Ito K, Lee T, et al. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation[J]. Medical Engineering and Physics, 2017, 50: 83-88.

[7] Ahanchian N, Nester CJ, Howard D, et al. Estimating the material properties of heel pad sub-layers using inverse finite element analysis[J]. Medical Engineering and Physics, 2017, 40: 11-19.

[8] Samani A, Plewes D. A method to measure the hyperelastic parameters of ex vivo breast tissue samples[J]. Physics in Medicine and Biology, 2004, 49(18): 4395-4405.

[9] Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples[J]. Physics in Medicine and Biology, 2007, 52(6): 1565-1576.

[10] Grigoriadis G, Newell N, Carpanen D, et al. Material properties of the heel fat pad across strain rates[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65: 398-407.

[11] Miller-Young JE, Duncan NA, Baroud G. Material properties of the human calcaneal fat pad in compression: experiment and theory[J]. Journal of Biomechanics, 2002, 35(12): 1523-1531.

[12] Erdemir A, Viveiros ML, Ulbrecht JS, et al. An inverse finite-element model of heel-pad indentation[J]. Journal of Biomechanics, 2006, 39(7): 1279-1286.

[13] Wearing SC, Smeathers JE, Yates B, et al. Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain[J]. Clinical Biomechanics, 2009, 24(4): 397-402.

[14] Spilker RL, Suh JK, Mow VC. Effects of friction on the unconfined compressive response of articular cartilage: a finite element analysis[J]. Journal of Biomechanical Engineering, 1990, 112(2): 138-146.

[15] Armstrong CG, Lai WM, Mow VC. An analysis of the unconfined compression of articular cartilage[J]. Journal of Biomechanical Engineering, 1984, 106(2): 165-173.

[16] Brown TD, Singerman RJ. Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis[J]. Journal of Biomechanics, 1986, 19(6): 474.

[17] Wu JZ, Dong RG, Schopper AW. Analysis of effects of friction on the deformation behavior of soft tissues in unconfined compression tests[J]. Journal of Biomechanics, 2004,37 (1): 147-155.

[18] Comley K, Fleck N. The compressive response of porcine adipose tissue from low to high strain rate[J]. International Journal of Impact Engineering, 2012, 46: 1-10.

[19] Comley K, Fleck NA. The toughness of adipose tissue: measurements and physical basis[J]. Journal of Biomechanics, 2010, 43(9):1823-1826.

[20] Saraf H, Ramesh KT, Lennon AM, et al. Mechanical properties of soft human tissues under dynamic loading[J]. Journal of Biomechanics, 2007, 40(9): 1960-1967.

[21] Engelbrektsson K. Evaluation of material models in LS-DYNA for impact simulation of white adipose tissue[D]. G?teborg, Sweden: Chalmers University of Technology, 2011.

[22] Martin AD, Daniel MZ, Drinkwater DT, et al. Adipose tissue density, estimated adipose lipid fraction and whole body adiposity in male cadavers[J]. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 1994, 18(2): 79-83.

[23] Yamada H. Strength of biological materials[M]. Baltimore: Williams &Wilkins, 1970.

[24] Comley K, Fleck NA. The high strain rate response of adipose tissue[C]//IUTAM Symposium on Mechanical Properties of Cellular Materials. LMT-Cachan, Cachan, France: Springer Netherlands, 2009: 27-33.

[25] Wu JZ, Cutlip RG, Andrew ME, et al. Simultaneous determination of the Nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests[J]. Skin Research and Technology, 2007, 13(1): 34-42.

[26] Mihai LA, Chin LK, Janmey PA, et al. A comparison of hyperelastic constitutive models applicable to brain and fat tissues[J]. Journal of the Royal Society Interface, 2015, 12(110): 486.

[27] Calvo-Gallego JL, Domínguez J, Cía TG, et al. Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80: 293-302.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]