51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
蟻群優(yōu)化算法構(gòu)建乳腺癌中miRNA調(diào)控的關(guān)鍵基因互作網(wǎng)絡(luò)

Construction of key gene interaction network of miRNA regulation in breast cancer by ant colony optimization

作者: 張?zhí)N顯  王雅梅  周萍 
單位:首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院(北京 100069) 首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院(北京 100069)
關(guān)鍵詞: 生物信息學(xué);  基因互作網(wǎng)絡(luò);  富集分析;  蟻群算法;  乳腺癌 
分類號(hào):R318
出版年·卷·期(頁(yè)碼):2019·38·4(369-376)
摘要:

目的 篩選ER陽(yáng)性乳腺癌中受miRNA調(diào)控的關(guān)鍵基因,以此構(gòu)建乳腺癌中miRNA-mRNA互作網(wǎng)絡(luò),進(jìn)而了解ER陽(yáng)性乳腺癌的調(diào)控機(jī)制,為篩選ER陽(yáng)性乳腺癌診斷預(yù)后的生物標(biāo)志物和治療靶點(diǎn)打下基礎(chǔ)。方法 利用MCF-7細(xì)胞系的AGO-IP(HITS-CLIP Protocol for Argonaute)高通測(cè)序?qū)嶒?yàn)數(shù)據(jù),發(fā)現(xiàn)miRNA對(duì)mRNA的真實(shí)調(diào)控關(guān)系,并以此構(gòu)建基于miRNAs誘導(dǎo)的沉默復(fù)合體(RISCs)miRNA-mRNA調(diào)控模組。根據(jù)調(diào)控模組利用蟻群優(yōu)化算法在基因互作網(wǎng)絡(luò)中篩選關(guān)鍵基因,構(gòu)建ER陽(yáng)性乳腺癌中miRNA調(diào)控下的關(guān)鍵基因互作網(wǎng)絡(luò),并對(duì)關(guān)鍵基因進(jìn)行功能分析。結(jié)果 本研究篩選出106個(gè)關(guān)鍵基因,244個(gè)調(diào)控關(guān)鍵基因的miRNA。根據(jù)乳腺癌中miRNA調(diào)控的關(guān)鍵基因互作網(wǎng)絡(luò)識(shí)別出了YWHAG、EP300、CHEK1、SMAD2、SMAD1、SYK、FGFR1、PIK3R2、IRS1、TGFBR2、CHUK和CSDE1等12個(gè)hub基因;并發(fā)現(xiàn)了hsa-miR-940、hsa-miR-545-3p、hsa-miR-3065-5p、hsa-miR-15a-5p、hsa-miR-181b-5p、hsa-miR-16-5p、hsa-miR-765、hsa-miR-4723-5p、hsa-miR-454-3p、hsa-miR-374a-5p、hsa-miR-34a-5p、hsa-miR-30e-5p、hsa-miR-19a-3p、hsa-miR-15b-5p、hsa-miR-149-5p和hsa-miR-128-3p等16個(gè)hub miRNA。這些基因主要對(duì)腫瘤細(xì)胞的增殖、侵襲、化療抗性、放療抗性和耐藥性起重要作用。結(jié)論 本研究篩選出關(guān)鍵基因及調(diào)控關(guān)鍵基因的miRNA對(duì)ER陽(yáng)性乳腺癌的耐藥性、化療抗性、放療抗性及腫瘤細(xì)胞的增殖、侵襲起到了重要調(diào)控作用,對(duì)ER陽(yáng)性乳腺癌臨床治療及預(yù)后起到重要參考作用。

Objective To screen the key genes regulated by miRNA in ER+ breast cancer, and construct the miRNA-mRNA interaction network in breast cancer, so as to understand the regulatory mechanism of ER+ breast cancer, and lay the foundation for screening the biomarkers and treatment targets of ER+ breast cancer for diagnosis and prognosis. Methods By using the high-pass sequencing data of AGO-IP (HITS-CLIP Protocol for Argonaute) of MCF-7 cell line, we found the real relationship between miRNA and mRNA, and constructed a miRNA-mRNA regulatory module based on microRNAs-induced silencing complex (RISCs). According to the regulation module, ant colony optimization algorithm was used to screen key genes in gene interaction network, and constructed the key gene interaction network under the regulation of miRNA in ER+ breast cancer, and analyzed the function of key genes. Results In this study, 106 key genes and 244 microRNAs regulating key genes were screened. Twelve hub genes, including YWHAG, EP300, CHEK1, SMAD2, SMAD1, SYK, FGFR1, PIK3R2, IRS1, TGFBR2, CHUK, CSDEE1, and 16 hub miRNAs, including hsa-miR-940, hsa-miR-545-3p, hsa-miR-3065-5p, hsa-miR-15a-5p, hsa-miR-181b-5p, hsa-miR-16-5p, hsa-miR-765, hsa-miR-4723-5p, hsa-miR-454-3p, hsa-miR-374a-5p, hsa-miR-34a-5p, hsa-miR-30e-5p, hsa-miR-19a-3p, hsa-miR-15b-5p, sa-miR-149-5p, hsa-miR-128-3p, were identified according to the key gene interaction network regulated by miRNA in breast cancer. These genes played an important role in the proliferation, invasion, chemotherapy resistance, radiotherapy resistance and drug resistance of cancer cells. Conclusions In this study, we screened out the key genes and the miRNA that regulated the key genes, which played an important role in the regulation of ER+ breast cancer resistance, chemotherapy resistance, radiotherapy resistance, proliferation and invasion of cancer cells. It also played an important reference role in the clinical treatment and prognosis of ER+ breast cancer.

參考文獻(xiàn):

[1]        Cheng Y, Yan Y, Gong J, et al. Trends in incidence and mortality of female breast cancer during transition in Central China[J]. Cancer Management and Research, 2018, 10: 6247-6255.

[2]        劉文靜,毛艷,王海波.乳腺癌新輔助治療的進(jìn)展[J].臨床外科雜志,2018,26(1):73-76.

Liu WJ, Mao Y, Wang HB. Progress and challenge of neoadjuvant therapy for breast cancer[J]. Journal of Clinical Surgery, 2018,26(1):73-76.

[3]        Li X, Dai D, Chen B, et al. Efficacy of PI3K/AKT/mTOR pathway inhibitors for the treatment of advanced solid cancers: A literature-based meta-analysis of 46 randomised control trials[J]. PLoS One, 2018, 13(2): e0192464.

[4]        Pillai MM, Gillen AE, Yamamoto TM, et al. HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer[J]. Breast Cancer Research and Treatment, 2014, 146(1): 85-97.

[5]        Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003,13(11): 2498-2504.

[6]        Alcaraz N, List M, Dissing-Hansen M, et al. Robust de novo pathway enrichment with KeyPathwayMiner 5[J]. F1000Res, 2016, 5: 1531.

[7]        Wang X. Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies[J]. Bioinformatics, 2016, 32(9):1316-1322.

[8]        宋瑞華,王宏偉,薛強(qiáng)飛.基于優(yōu)化蟻群算法的圖像邊緣檢測(cè)改進(jìn)算法[J].電子測(cè)量技術(shù),2013,36(8):56-60.

Song RH, Wang HW, Xue QF. Detecting edge of images based on optimized ant colony algorithm[J]. Electronic Measurement Technology, 2013, 36(8):56-60.

[9]        胡小兵,黃席樾.蟻群優(yōu)化算法及其應(yīng)用[J].計(jì)算機(jī)仿真,2004,21(5):81-85.

Hu XB, Huang XY. Ant colony optimization algorithm and its application[J]. Computer Simulation, 2004,21(5):81-85.

[10]      Li M. Efficiency improvement of ant colony optimization in solving the moderate LTSP[J]. Journal of Systems Engineering and Electronics, 2015, 26(6): 1300-1308.

[11]      Alcaraz N, Pauling J, Batra R, et al. KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape[J]. BMC Systems Biology, 2014, 8: 99.

[12]      Alcaraz N, Friedrich T, K?tzing T, et al. Efficient key pathway mining: combining networks and OMICS data[J]. Integrative Biology (Camb), 2012, 4(7): 756-764.

[13]      Vanhaesebroeck B, Leevers SJ, Ahmadi K, et al. Synthesis and function of 3-phosphorylated inositol lipids[J]. Annual Review of Biochemistry, 2001, 70: 535-602.

[14]      Zhao W, Sun M, Li S, et al. Transcription factor ATF3 mediates the radioresistance of breast cancer[J]. Journal of Cellular and Molecular Medicine, 2018, 22(10): 4664-4675.

[15]      Xiao J, Lin HY, Zhu YY, et al. MiR-126 regulates proliferation and invasion in the bladder cancer BLS cell line by targeting the PIK3R2-mediated PI3K/Akt signaling pathway[J]. OncoTargets and Therapy, 2016, 9: 5181-5193.

[16]      Samanta D, Datta PK. Alterations in the Smad pathway in human cancers[J]. Frontiers in Bioscience(Landmark Edition), 2012, 17(1):1281-1293.

[17]      Zhuang J, Shen L, Yang L, et al. TGFβ1 promotes gemcitabine resistance through regulating the LncRNA-LET/NF90/miR-145 signaling axis in bladder cancer[J]. Theranostics, 2017, 7(12): 3053-3067.

[18]      Wang P, Deng Y, Fu X. MiR-509-5p suppresses the proliferation, migration, and invasion of non-small cell lung cancer by targeting YWHAG[J]. Biochemical and Biophysical Research Communications, 2017, 482(4): 935-941.

[19]      Yoo JO, Kwak SY, An HJ, et al. miR-181b-3p promotes epithelial-mesenchymal transition in breast cancer cells through Snail stabilization by directly targeting YWHAG[J]. Biochimica et Biophysica Acta, 2016, 1863(7 Pt A): 1601-1611.

[20]      Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer[J]. Cold Spring Harbor Perspectives in Medicine, 2017, 7(3).

[21]      Asaduzzaman M, Constantinou S, Min H, et al. Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer[J]. Breast Cancer Research and Treatment, 2017, 163(3): 461-474.

[22]      Hashimoto K, Ochi H, Sunamura S, et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2204-2209.

[23]      Rajendiran S, Parwani AV, Hare RJ, et al. MicroRNA-940 suppresses prostate cancer migration and invasion by regulating MIEN1[J]. Molecular Cancer, 2014, 13: 250.

[24]      Leung YK, Chan QK, Ng CF, et al. Hsa-miRNA-765 as a key mediator for inhibiting growth, migration and invasion in fulvestrant-treated prostate cancer[J]. PLoS One, 2014, 9(5): e98037.

[25]      Gu Y, Zhang M, Peng F, et al. The BRCA1/2-directed miRNA signature predicts a good prognosis in ovarian cancer patients with wild-type BRCA1/2[J]. Oncotarget, 2015, 6(4):2397-2406.

[26]      Xie G, Ke Q, Ji YZ, et al. FGFR1 is an independent prognostic factor and can be regulated by miR-497 in gastric cancer progression[J]. Brazilian Journal of Medical and Biological Research, 2019, 52(1): e7816.

[27]      Liu JJ, Zhang X, Wu XH. miR-93 promotes the growth and invasion of prostate cancer by upregulating its target genes TGFBR2, ITGB8, and LATS2[J]. Molecular Therapy Oncolytics, 2018, 11: 14-19.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]