51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于多粒度級(jí)聯(lián)森林的骨質(zhì)疏松性骨折預(yù)測(cè)研究

Prediction of osteoporotic fracture based on multi-grained cascade forest

作者: 徐輝煌  張海宇     
單位: 上海理工大學(xué)醫(yī)療器械與食品學(xué)院(上海 200093)
關(guān)鍵詞: 機(jī)器學(xué)習(xí);  骨質(zhì)疏松性骨折;  t分布鄰域嵌入;  隨機(jī)森林;  多粒度級(jí)聯(lián)森林 
分類號(hào):R318;TP181
出版年·卷·期(頁(yè)碼):2019·38·4(384-391)
摘要:

目的 骨質(zhì)疏松性骨折(osteoporotic fracture, OF)的預(yù)測(cè)對(duì)于骨折防范具有重要的臨床指導(dǎo)意義。針對(duì)傳統(tǒng)logistic回歸預(yù)測(cè)模型存在的精度不高和未考慮遺傳因子問(wèn)題,本文引入多粒度級(jí)聯(lián)森林(multi-grained cascade forest, gcForest)并結(jié)合遺傳因子來(lái)預(yù)測(cè)OF。方法 首先基于t分布鄰域嵌入(t-distributed stochastic neighbor embedding, t-SNE)算法對(duì)OF關(guān)聯(lián)基因位點(diǎn)進(jìn)行非線性降維,降維后的基因位點(diǎn)與臨床因素構(gòu)成特征組。然后構(gòu)建gcForest模型對(duì)OF進(jìn)行預(yù)測(cè)。最后通過(guò)10次十折分層交叉驗(yàn)證與logistic、梯度提升決策樹(shù)、隨機(jī)森林進(jìn)行對(duì)比。結(jié)果 基于gcForest的模型分類精度為0.892 7,AUC值為0.92±0.05,泛化性能最優(yōu)。結(jié)論 在考慮遺傳因素的條件下,gcForest分類效果優(yōu)于其他模型,驗(yàn)證了本文方法的高效性和實(shí)用性。

Objective The prediction of osteoporotic fracture (OF) has important clinical guiding significance for fracture prevention. In view of the low precision of traditional logistic regression model and the lack of consideration of genetic factors, this paper introduces multi-grained cascade forest (gcForest) and combines genetic factors to predict the OF. Methods Firstly, based on the t-distributed stochastic neighbor embedding (t-SNE) method, the nonlinear descending dimension of the associated gene loci was carried out, and the gene loci and clinical factors were formed in the feature group after the reduction of the dimension. The gcForest model was then constructed to predict the OF. Finally, 10 times 10-fold stratified cross-validation was compared with logistic, gradient boosting decision tree and random forest. Results The model classification accuracy based on gcForest was 0.8927, AUC value was 0.92±0.05, and the generalization performance was optimal. Conclusions Under the condition of considering genetic factors, the gcForest classification effect is better than other models, which verifies the efficiency and practicability of the method.

參考文獻(xiàn):

[1]       章軼立, 魏戌, 申浩, 等. 骨質(zhì)疏松性骨折診斷技術(shù)與風(fēng)險(xiǎn)預(yù)測(cè)工具研究進(jìn)展[J]. 中國(guó)骨質(zhì)疏松雜志, 2018,24(5):676-680.

Zhang YL, Wei X, Shen H, et al. Advances in diagnostic techniques and risk prediction tools for osteoporotic fractures[J]. Chinese Journal of Osteoporosis, 2018,24(5):676-680.

[2]       蔡淑芬, 邢其丹, 豐吉南, 等. 老年類風(fēng)濕關(guān)節(jié)炎患者發(fā)生骨質(zhì)疏松的危險(xiǎn)因素分析 [J]. 中國(guó)骨質(zhì)疏松雜志, 2018,24(7):922-925, 939.

Cai SF, Xing QD, Feng JN, et al. Analysis of the risk factors of osteoporosis in elderly patients with rheumatoid arthritis[J]. Chinese Journal of Osteoporosis, 2018, 24(7):922-925, 939.

[3]       鄭煜暉, 吳世強(qiáng), 莊華峰. 老年骨質(zhì)疏松患者骨代謝指標(biāo)、骨密度與骨質(zhì)疏松性骨折的相關(guān)性[J]. 中國(guó)老年學(xué)雜志, 2017,37(23):5920-5922.

[4]       章軼立, 魏戌, 聶佩蕓, 等. 基于Group Lasso的Logistic回歸模型構(gòu)建絕經(jīng)后骨質(zhì)疏松性骨折初發(fā)風(fēng)險(xiǎn)評(píng)估工具[J]. 中國(guó)骨質(zhì)疏松雜志, 2018,24(8):994-999,1028.

Zhang YL, Wei X, Nie PY, et al. Establishment of risk assessment tool for postmenopausal osteoporotic fractures based on Group Lasso's logistic regression model[J]. Chinese Journal of Osteoporosis, 2018,24(8):994-999,1028.

[5]       Taylor KC, Evans DS, Edwards DRV, et al. A genome-wide association study meta-analysis of clinical fracture in 10,012 African American women[J]. Bone Reports, 2016, 5: 233-242.

[6]       Kilic N, Hosgormez E. Automatic estimation of osteoporotic fracture cases by using ensemble learning approaches[J]. Journal of Medical Systems, 2016, 40(3):61.

[7]       Friedman JH. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4):367-378.

[8]       Guo Y, Wang JT, Liu H, et al. Are bone mineral density loci associated with hip osteoporotic fractures? A validation study on previously reported genome-wide association loci in a Chinese population [J]. Genetics & Molecular Research, 2012, 11(1): 202-210.

[9]       Guo Y, Yang TL, Dong SS, et al. Genetic analysis identifies DDR2 as a novel gene affecting bone mineral density and osteoporotic fractures in Chinese population [J]. PLoS One, 2015, 10(2): e0117102.

[10]    Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges[J]. Nature Reviews Genetics, 2012, 13(8): 576-588.

[11]    周志華. 機(jī)器學(xué)習(xí)[M]. 北京:清華大學(xué)出版社, 2016: 246-267.

Zhou ZH. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 246-267.

[12]    van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(Nov):2579-2605.

[13]    Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12(10): 2825-2830.

[14]    周文怡,顧徐波,施勇,等.基于機(jī)器學(xué)習(xí)的網(wǎng)頁(yè)暗鏈檢測(cè)方法[J].計(jì)算機(jī)工程, 2018, 44(10):22-27.

Zhou WY, Gu XB, Shi Y, et al. Detection method for hidden hyperlink based on machine learning[J].Computer Engineering, 2018, 44(10): 22-27.

[15]    Quinlan JR. Induction on decision tree[J]. Machine Learning, 1986, 1(1): 81-106.

[16]    Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.

[17]    Zhou ZH, Feng J. Deep Forest: Towards An Alternative to Deep Neural Networks [J/OL]. arXiv:1702.08835v3 [cs.LG] (2018-05-14) [2018-11-11]. https://arxiv.org/abs/1702.08835v3.

[18]    Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme [J]. BBA - Protein Structure, 1975, 405(2): 442-451.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]