51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于特征融合的肝包蟲病CT圖像識別

CT image recognition of liver hydatid disease based on feature fusion

作者: 排孜麗耶·尤山塔依  嚴(yán)傳波  木拉提·哈米提  姚娟  阿布都艾尼·庫吐魯克  吳淼 
單位:新疆醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院(烏魯木齊 830011) 新疆醫(yī)科大學(xué)醫(yī)學(xué)工程技術(shù)學(xué)院(烏魯木齊 830011) 新疆醫(yī)科大學(xué)第一附屬醫(yī)院影像中心(烏魯木齊 830011)
關(guān)鍵詞: 肝包蟲病;  特征融合;  計算機輔助診斷;  特征提取;  分類識別 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·4(400-406)
摘要:

目的 探討特征融合方法在肝包蟲病CT圖像分類識別中的應(yīng)用,旨在提高肝包蟲病的診斷準(zhǔn)確率。方法 選取正常肝臟和單囊型肝包蟲病CT圖像各150張,對每幅圖像采取空域與頻域濾波算法、數(shù)學(xué)形態(tài)學(xué)算法和點處理,分別得到10幅特征子圖像并對它們進(jìn)行特征融合,對融合后的圖像提取灰度和紋理特征,通過統(tǒng)計學(xué)分析篩選關(guān)鍵特征。結(jié)果 對提取的10維特征進(jìn)行統(tǒng)計學(xué)分析,得到正常肝臟和單囊型肝包蟲CT融合圖像之間完全沒有交集的4個灰度和1個紋理特征取值范圍,由此來區(qū)分肝包蟲病與正常肝臟CT圖像。結(jié)論 從原始圖像中提取特征子圖像并進(jìn)行融合,再對融合后圖像提取特征的方法能夠很好地區(qū)分識別正常肝臟和單囊型肝包蟲病CT圖像,為肝包蟲病的早期診斷提供依據(jù)。

Objective To discuss the application of feature fusion method in the CT image classification and recognition of hepatic hydatid disease, in order to improve the diagnosis classification of hepatic echinococcosis. Methods CT medical images of normal liver and single cystic hepatic hydatid disease were selected,each 150 spatial and frequency-domain filtering algorithms, mathematical morphology algorithms and point processing were used to each image to obtain 10 feature images respectively and fused them effectively. Grayscale and texture features were extracted from each fused images, and the key features were selected by statistical analysis. Results Statistical analysis was performed on the extracted 10-dimensional features and obtained 4 gray scales and 1 texture features range with no intersection between the normal liver and single-cystic hepatic hydatid fused image, thereby distinguishing the liver hydatid disease and normal liver CT images. Conclusions Extracting feature sub-images from the original image and fusing them, extracting gray and texture features from the fused image can distinguish the CT images of normal liver and single-cystic hepatic hydatid, it also providing evidence for the early diagnosis of hepatic hydatid disease.

參考文獻(xiàn):

[1] 雷軍強, 陳勇, 王曉慧, 等. 肝包蟲病的CT和MR診斷[J]. 中國醫(yī)學(xué)影像技術(shù), 2010, 26(2): 291-293.

Lei JQ, Chen Y, Wang XH, et al. CT and MR diagnosis of hepatic hydatidosis[J]. Chinese Journal of Medical Imaging Technology,2010,26(2): 291-293.

[2] 袁雁雯, 凱撒爾, 管文舉. 囊性肝包蟲病的CT診斷[J]. 山東醫(yī)科大學(xué)學(xué)報, 2015, 46(9): 896-898.

[3] 張壯志, 張文寶, 石保新, 等. 我國包蟲病防控及其面臨的困難[J].獸醫(yī)導(dǎo)刊, 2011, (6): 27-29.

[4] 張壯志, 庫爾班·居麥, 陳永強, 等. 包蟲病防控的困難與回顧[J].中國動物保健, 2017, 19(7): 33-35.

[5] 溫浩. 肝包蟲病診斷和手術(shù)治療新進(jìn)展[J]. 中華消化外科雜志, 2011, 10(4): 290-292.

Wen H. Advancement of diagnosis and surgical treatment for hepatic echinococcosis [J]. Chinese Journal of Digestive Surgery, 2011, 10(4): 290-292.

[6] 陳先志. 肝包蟲的CT診斷價值[J]. 醫(yī)藥前沿, 2014, (35): 43-44.

[7] Chang CC, Chen HH, Chang YC, et al. Computer-aided diagnosis of liver tumors on computed tomography images [J]. Computer Methods & Programs in Biomedicine, 2017, 145(4): 45-51.

[8] Yang HC, Lu R, Wu CC, et al. Reliable and stable computer-aided diagnosis systems for images[J]. Computer Methods & Programs in Biomedicine, 2016, 128: A1-A2.

[9] 葛曉倩. 計算機輔助診斷在血糖領(lǐng)域的應(yīng)用發(fā)展分析[J]. 科學(xué)與財富, 2016, (12): 403-403.

[10] Fatima T, Naoufel W, Hussain A. Computer aided diagnosis system for early lung cancer detection [J]. Algorithms, 2015, 8(4): 1088-1110.

[11] Park SM, Kim EM, Lee BH. Computer-aided diagnosis system for detection of liver tumor in CT liver image [J]. International Congress,2005,1281(3): 1404-1404.

[12] 孔喜梅, 木拉提·哈米提, 嚴(yán)傳波, 等. 基于小波變換的新疆地方性肝包蟲CT圖像分類研究[J]. 生物醫(yī)學(xué)工程研究, 2016, 35(3): 162-167.

Kong XM, Murat H, Yan CB, et al. Xinjiang local liver hydatid ct images classification and research based wavelet transform [J]. Journal of Biomedical Engineering Research, 2016, 35(3): 162-167.

[13] 張歲霞, 木拉提·哈米提, 嚴(yán)傳波, 等. 基于數(shù)據(jù)挖掘的新疆高發(fā)肝包蟲病的分型研究[J]. 生物醫(yī)學(xué)工程與臨床, 2016 , 20 (5): 521-528.

Zhang SX, Murat H, Yan CB, et al. Classification of hepatic hydatidosis in xinjiang based on data mining [J]. Biomedical Engineering & Clinical Medicine, 2016, 20(5): 521-528.

[14] 桂婷. 肝癌B超圖像的計算機輔助診斷研究[D].杭州: 浙江工業(yè)大學(xué), 2008.

Gui T. The Study of computer aided diagnosis of b-ultrasonic medical images of liver cancer [D]. Hangzhou:Zhejiang University of Technology, 2008.

[15] 張靜, 倪紅霞, 苑春苗, 等. 精通MATLAB數(shù)字圖像處理與識別[M]. 北京: 人民郵電出版社, 2013: 95-98,131-137,222-232.

[16] 張汗靈. MATLAB在圖像處理中的應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2008: 114,138.

[17] Gonzalez RC, Woods RE, Eddins SL. Digital image processing using MATLAB [M]. Beijing: Publishing House of Electronics Industry, 2009: 423-431.

[18] 張強, 王正林. 精通MATLAB圖像處理[M]. 北京: 電子工業(yè)出版社, 2009: 197-199.

[19] 楊芳, 木拉提·哈米提, 嚴(yán)傳波, 等. 基于SVM的新疆哈薩克族食管癌醫(yī)學(xué)圖像特征提取及分類研究[J]. 科技通報, 2016, 32(3): 53-57.

Yang F, Murat H, Yan CB, et al. Feature extraction and classification for Xinjiang Kazak esophageal cancer based on SVM [J]. Bulletin of Science and Technology, 2016, 32(3): 53-57.

[20] Yang F, Murat H, Yan CB, et al. Feature extraction and classification on esophageal x-ray images of Xinjiang Kazak nationality [J]. Journal of Healthcare Engineering, 2017, 2017(5): 1-11.

[21] 孔喜梅, 木拉提·哈米提, 嚴(yán)傳波, 等. 新疆高發(fā)病食管癌圖像的特征提取及分類[J]. 北京生物醫(yī)學(xué)工程, 2017, 36(1): 37-43.

Kong XM, Murat H, Yan CB, et al. Feature extraction and classification of x-ray images for Xinjiang Esophageal cancer with high morbidity[J]. Beijing Biomedical Engineering, 2017, 36(1): 37-43.

[22] 張歲霞, 嚴(yán)傳波, 木拉提·哈米提, 等. KNN分類器在新疆哈薩克族食管癌分型中的應(yīng)用[J]. 科技通報, 2016, 32(8): 46-50.

Zhang SX, Yan CB, Murat H, et al. Classification on Xinjiang Kazak esophageal disease based on KNN classifier [J]. Bulletin of Science and Technology, 2016, 32(8): 46-50.

[23] 張洪舉. 網(wǎng)站數(shù)據(jù)分析: 數(shù)據(jù)驅(qū)動的網(wǎng)站管理、優(yōu)化和運營[M]. 北京: 機械工業(yè)出版社, 2013: 268.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]