[1] Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation [J]. Science., 1999,285 (5425) :221-227. [2] Chen HY, Fermin A, Vardhana S, et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-Cell activation at the immunological synapse[J]. Procceedings of the national academy of sciences of the USA,2009,106(34):14496-14501. [3] Hafeman DG, Von TV, Mcconnell HM. Specific antibody-dependent interactions between macrophages and lipid haptens in planar lipid monolayers[J]. Procceedings of the national academy of sciences of the USA, 1981,78(7):4552-4556. [4] Toomre D, Axelrod D. Chapter 2 – Total Internal Reflection Fluorescent Microscopy [J]. Cell biology, 2006,129(1):19-28. [5] Klar TA, Hell SW. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics letter,1999,24(14):954-956. [6] Hell SW, Sahl SJ, Bates M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of physics D-applied physics, 2015,48(44):443001. [7] 張弘, 馮繼宏, 高辛未,等. 受激發(fā)損耗(STED)顯微術(shù)及在生物鄰域的應(yīng)用[J]. 智慧健康, 2015,1(2):12-16. Zhang H, Feng JH, Gao XW, et al. The stimulated emission depletion microscopy (STED)& application in the biology field[J]. Smart healthcare, 2015,1(2):12-16. [8] 李帥, 匡翠方, 丁志華,等. 受激發(fā)射損耗顯微術(shù)(STED)的機(jī)理及進(jìn)展研究[J]. 激光生物學(xué)報, 2013,22(2):104-113. Li Shuai, Kuang CF, Ding ZH, et al. The mechanism and research development of the stimulated emission depletion microscopy (STED) [J]. Laser biology, 2013,22(2):104-113. [9] Evanko D. Primer: fluorescence imaging under the diffraction limit[J]. Nature Methods, 2009,6(1):19-20. [10] Dunsby C, Neil MAA, French PMW. A STED-FLIM microscope applied to imaging the natural killer cell immune synapse[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2011,7903(1):121-128. [11] Rak GD, Mace EM, Banerjee PP,et al, Orange JS. Natural Killer Cell Lytic Granule Secretion Occurs through a Pervasive Actin Network at the Immune Synapse[J]. Communicative & Integrative Biology, 2012,9(2):e1001151-186. [12] Mace EM, Orange JS. Dual channel STED nanoscopy of lytic granules on actin filaments in natural killer cells[J]. Communicative & Integrative Biology, 2012,5(2):184-186. [13] Mace EM, Orange JS. Visualization of the Immunological Synapse by Dual Color Time-gated Stimulated Emission Depletion (STED) Nanoscopy[J]. Journal of visualized experiments, 2014,(85):1-6. [14] Ashdown GW, Burn GL, Williamson DJ, et al. Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse[J]. Biophysical Journal, 2017,112(8):1703. [15] Tinnefeld P, Eggeling C, Hell SW. Far-field optical nanoscopy[J]. Analytical and Bioanalytical Chemistry, 2016, 408(10):2377-2379. [16] Roumier A, Olivo-Marin JC, Arpin M, et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation[J]. Immunity,2001,15(5):715-728. [17] Huang ZJ, Haugland RP, You WM, et al. Phallotoxin and actin binding assay by fluorescence enhancement[J]. Analytical biochemistry, 1992,200(1):199-204. [18] Anderl J, Echner H, Faulstich H. Chemical modification allows phallotoxins and amatoxins to be used as tools in cell biology[J]. Beilstein Journal of Organic Chemistry, 2012,8(1):2072-2084. [19] Lukinavi??ius G, Reymond L, D’Este E, et al. Fluorogenic probes for live-cell imaging of the cytoskeleton[J]. Nature Methods, 2014,11(7):731-733. [20] Riedl J, Crevenna AH, Kessenbrock K, et al. Lifeact: a versatile marker to visualize F-actin[J]. Nature Methods, 2008,5(7):605-607. [21] Cardo L, Thomas SG, Mazharian A, et al. Accessible Synthetic Probes for Staining Actin inside Platelets and Megakaryocytes by Employing Lifeact Peptide[J]. Chembiochem. 2015,16(11):1680-1688. [22] Xu K, Zhong G, Zhuang X. Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons[J]. Science , 2013,339(6118):452-456. [23] Monks CR, Freiberg BA, Kupfer H,et al. Pillars article: Three-dimensional segregation of supramolecular activation clusters in T cells[J]. Nature. 1998. 395: 82-86. [24] Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation[J]. Science, 1999, 285(5425):221-227. [25] Zheng P, Bertolet G, Chen Y, et al. Super-resolution Imaging of the Natural Killer Cell Immunological Synapse on a Glass-supported Planar Lipid Bilayer[J]. Journal of visualized experiments, 2015,(96):e52502. [26] Hell SW, Lindek S, Cremer C, et al. Measurement of the 4Pi-confocal point spread function proves 75 nm resolution[J]. Applied physics letters, 1994,64(11):1335-1337. [27] Brown ACN, Oddos S, Dobbie IM, et al. Correction: Remodelling of Cortical Actin Where Lytic Granules Dock at Natural Killer Cell Immune Synapses Revealed by Super-Resolution Microscopy[J]. Plos Biology, 2012,10(8):e1001152 [28] Jang JH, Huang Y, Zheng P, et al. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics[J]. Journal of immunology, 2015,195(3):1320-1330. [29] 林瑋,褚以微. 免疫突觸形成的生物學(xué)特點(diǎn)及其光學(xué)成像研究[J]. 生物化學(xué)與生物物理進(jìn)展, 2017, 44(12):1066-1073. Lin W, Chu YW, The biological properties of immunology synapse information and the research of imaing[J].Progress in Biochemistry and Biophysics,2017,44(12):1066-1073. [30] 張玉玲, 俞鐘, 李海亮. NK細(xì)胞免疫缺陷在急性白血病免疫逃逸中的研究進(jìn)展[J].贛南醫(yī)學(xué)院學(xué)報,2018, 38(2):186-190. Zhang YL, Yu Z, Li HL, NK cell immune deficiency in the research development of acute leukemia immune escape[J]. Journal of Gannan Medical University,2018,38(2):186-190. [31] 臧福才, 劉明月, 劉敏,等. 不同行為特征肺癌小鼠血管內(nèi)皮生長因子表達(dá)及NK細(xì)胞的活性差異研究[J].中國醫(yī)藥導(dǎo)報,2018,15(15):18-21. Zang FC,Liu MY,Liu M,et al. Study on the differences of the expression of vascular endothelial growth factor and the activity of NK cells in lung cancer mice with different behavior characteristics[J]. China Medical Herald ,2018,15(15):18-21.
|