51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
受激發(fā)射損耗顯微超分辨成像技術(shù)在免疫突觸中的研究進(jìn)展

Research tendency on stimulated emission depletion super-resolution imaging technology in immunological synapse

作者: 高辛未  張碩晨  黃珊  朱書緣  馮繼宏 
單位:北京工業(yè)大學(xué)生命科學(xué)與生物工程學(xué)院(北京 100124)
關(guān)鍵詞: 自然殺傷細(xì)胞;  免疫突觸;  受激發(fā)射損耗顯微鏡;  熒光探針;  生物芯片 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·5(530-534)
摘要:

由于光學(xué)衍射的限制,傳統(tǒng)光學(xué)顯微鏡只能看到免疫突觸(immunological synapse,IS)(>200nm)的輪廓,因此在觀察嵌合抗原受體(chimeric antigen receptor, CAR)修飾的自然殺傷(native killer, NK)細(xì)胞靶向殺傷腫瘤細(xì)胞時,NK細(xì)胞的IS形成過程中會丟掉很多信息。受激發(fā)射損耗(stimulated emission depletion, STED)顯微鏡的出現(xiàn)為IS的研究提供了有力工具。本文概述了STED超分辨成像技術(shù)的基本原理,分析了成像過程中的技術(shù)難點(diǎn),介紹了在IS領(lǐng)域中與STED成像技術(shù)結(jié)合使用的熒光探針、生物芯片的研究新進(jìn)展,探討并展望了STED超分辨顯微技術(shù)在IS研究領(lǐng)域的意義和未來發(fā)展方向。

Due to the limitation of optical diffraction, traditional optical microscope has difficulty in observing the fine structures (<200nm) of immunological synapse(IS). Therefore, a lot of valuable information is lost in observing NK cells formation process when NK cells targeted kill tumor cells. Stimulated emission depletion (STED) microscopy is a powerful tool in the research of IS. In this paper, we review the basic principle of STED and analyze the technical difficulties in the imaging process. Moreover, the research progress of fluorescent probe and biological chip used in IS field combined with STED are also introduced in this paper. Finally, the potential significance and future development of STED in the IS research filed are discussed and prospected.

參考文獻(xiàn):

[1]          Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation [J]. Science., 1999,285 (5425) :221-227.

[2]          Chen HY, Fermin A, Vardhana S, et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-Cell activation at the immunological synapse[J]. Procceedings of the national academy of sciences of the USA,2009,106(34):14496-14501.

[3]          Hafeman DG, Von TV, Mcconnell HM. Specific antibody-dependent interactions between macrophages and lipid haptens in planar lipid monolayers[J]. Procceedings of the national academy of sciences of the USA, 1981,78(7):4552-4556.

[4]          Toomre D, Axelrod D. Chapter 2 – Total Internal Reflection Fluorescent Microscopy [J]. Cell biology, 2006,129(1):19-28.

[5]          Klar TA, Hell SW. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics letter,1999,24(14):954-956.

[6]          Hell SW, Sahl SJ, Bates M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of physics D-applied physics, 2015,48(44):443001.

[7]          張弘, 馮繼宏, 高辛未,等. 受激發(fā)損耗(STED)顯微術(shù)及在生物鄰域的應(yīng)用[J]. 智慧健康, 2015,1(2):12-16.

       Zhang H, Feng JH, Gao XW, et al. The stimulated emission depletion microscopy (STED)& application in the biology field[J]. Smart healthcare, 2015,1(2):12-16.

[8]          李帥, 匡翠方, 丁志華,等. 受激發(fā)射損耗顯微術(shù)(STED)的機(jī)理及進(jìn)展研究[J]. 激光生物學(xué)報, 2013,22(2):104-113.

       Li Shuai, Kuang CF, Ding ZH, et al. The mechanism and research development of the stimulated emission depletion microscopy (STED) [J]. Laser biology, 2013,22(2):104-113.

[9]          Evanko D. Primer: fluorescence imaging under the diffraction limit[J]. Nature Methods, 2009,6(1):19-20.

[10]        Dunsby C, Neil MAA, French PMW. A STED-FLIM microscope applied to imaging the natural killer cell immune synapse[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2011,7903(1):121-128.

[11]        Rak GD, Mace EM, Banerjee PP,et al, Orange JS. Natural Killer Cell Lytic Granule Secretion Occurs through a Pervasive Actin Network at the Immune Synapse[J]. Communicative & Integrative Biology, 2012,9(2):e1001151-186.

[12]        Mace EM, Orange JS. Dual channel STED nanoscopy of lytic granules on actin filaments in natural killer cells[J]. Communicative & Integrative Biology, 2012,5(2):184-186.

[13]        Mace EM, Orange JS. Visualization of the Immunological Synapse by Dual Color Time-gated Stimulated Emission Depletion (STED) Nanoscopy[J]. Journal of visualized experiments, 2014,(85):1-6.

[14]    Ashdown GW, Burn GL, Williamson DJ, et al. Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse[J]. Biophysical Journal, 2017,112(8):1703.

[15]        Tinnefeld P, Eggeling C, Hell SW. Far-field optical nanoscopy[J]. Analytical and Bioanalytical Chemistry, 2016, 408(10):2377-2379.

 [16]      Roumier A, Olivo-Marin JC, Arpin M, et al. The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation[J]. Immunity,2001,15(5):715-728.

[17]        Huang ZJ, Haugland RP, You WM, et al. Phallotoxin and actin binding assay by fluorescence enhancement[J]. Analytical biochemistry, 1992,200(1):199-204.

[18]        Anderl J, Echner H, Faulstich H. Chemical modification allows phallotoxins and amatoxins to be used as tools in cell biology[J]. Beilstein Journal of Organic Chemistry, 2012,8(1):2072-2084.

[19]        Lukinavi??ius G, Reymond L, D’Este E, et al. Fluorogenic probes for live-cell imaging of the cytoskeleton[J]. Nature Methods, 2014,11(7):731-733.

[20]        Riedl J, Crevenna AH, Kessenbrock K, et al. Lifeact: a versatile marker to visualize F-actin[J]. Nature Methods, 2008,5(7):605-607.

[21]        Cardo L, Thomas SG, Mazharian A, et al. Accessible Synthetic Probes for Staining Actin inside Platelets and Megakaryocytes by Employing Lifeact Peptide[J]. Chembiochem. 2015,16(11):1680-1688.

[22]        Xu K, Zhong G, Zhuang X. Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons[J]. Science , 2013,339(6118):452-456.

[23]        Monks CR, Freiberg BA, Kupfer H,et al. Pillars article: Three-dimensional segregation of supramolecular activation clusters in T cells[J]. Nature. 1998. 395: 82-86.

[24]        Grakoui A, Bromley SK, Sumen C, et al. The immunological synapse: a molecular machine controlling T cell activation[J]. Science, 1999, 285(5425):221-227.

 [25]      Zheng P, Bertolet G, Chen Y, et al. Super-resolution Imaging of the Natural Killer Cell Immunological Synapse on a Glass-supported Planar Lipid Bilayer[J]. Journal of visualized experiments, 2015,(96):e52502.

[26]        Hell SW, Lindek S, Cremer C, et al. Measurement of the 4Pi-confocal point spread function proves 75 nm resolution[J]. Applied physics letters, 1994,64(11):1335-1337.

[27]        Brown ACN, Oddos S, Dobbie IM, et al. Correction: Remodelling of Cortical Actin Where Lytic Granules Dock at Natural Killer Cell Immune Synapses Revealed by Super-Resolution Microscopy[J]. Plos Biology, 2012,10(8):e1001152

[28]    Jang JH, Huang Y, Zheng P, et al. Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics[J]. Journal of immunology, 2015,195(3):1320-1330.

[29]    林瑋,褚以微. 免疫突觸形成的生物學(xué)特點(diǎn)及其光學(xué)成像研究[J]. 生物化學(xué)與生物物理進(jìn)展, 2017, 44(12):1066-1073.

Lin W, Chu YW, The biological properties of immunology synapse information and the research of imaing[J].Progress in Biochemistry and Biophysics,2017,44(12):1066-1073.

[30]    張玉玲, 俞鐘, 李海亮. NK細(xì)胞免疫缺陷在急性白血病免疫逃逸中的研究進(jìn)展[J].贛南醫(yī)學(xué)院學(xué)報,2018, 38(2):186-190.

       Zhang YL, Yu Z, Li HL, NK cell immune deficiency in the research development of acute leukemia immune escape[J]. Journal of Gannan Medical University,2018,38(2):186-190.

[31] 臧福才, 劉明月, 劉敏,等. 不同行為特征肺癌小鼠血管內(nèi)皮生長因子表達(dá)及NK細(xì)胞的活性差異研究[J].中國醫(yī)藥導(dǎo)報,2018,15(15):18-21.

   Zang FC,Liu MY,Liu M,et al. Study on the differences of the expression of vascular endothelial growth factor and the activity of NK cells in lung cancer mice with different behavior characteristics[J].  China Medical Herald

,2018,15(15):18-21.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]