51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
導(dǎo)航與機器人輔助頸椎螺釘內(nèi)固定術(shù)的臨床應(yīng)用

Clinical application of cervical screw internal fixation under navigation and robot assistance

作者: 張琦  范明星  劉亞軍  韓曉光  趙經(jīng)緯  田偉 
單位:北京積水潭醫(yī)院脊柱外科(北京 100035) 骨科機器人技術(shù)北京市重點實驗室(北京 100035)
關(guān)鍵詞: 導(dǎo)航;  機器人;  頸椎;  螺釘;  準(zhǔn)確性 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·5(504-507)
摘要:

目的 隨著計算機技術(shù)和工業(yè)的發(fā)展,導(dǎo)航與手術(shù)機器人系統(tǒng)以其創(chuàng)傷小、手術(shù)操作時間短、精準(zhǔn)、穩(wěn)定和安全等特點,越來越多地運用在脊柱內(nèi)固定手術(shù)中。本研究回顧性分析導(dǎo)航與機器人輔助頸椎螺釘內(nèi)固定手術(shù)的臨床應(yīng)用病例,對其準(zhǔn)確性和安全性進行評價。方法 納入2006年1月至2019年8月于北京積水潭醫(yī)院脊柱外科行導(dǎo)航或機器人輔助頸椎手術(shù)的患者369例。手術(shù)的主要評價指標(biāo)包括螺釘置釘精確率、手術(shù)時間以及術(shù)后5 d內(nèi)并發(fā)癥發(fā)生率。根據(jù)Gertzbein-Robbins分類標(biāo)準(zhǔn),對螺釘是否侵犯骨皮質(zhì)的情況進行評估。結(jié)果 369例患者均順利完成手術(shù),其中導(dǎo)航手術(shù)283例、機器人手術(shù)86例,手術(shù)時間為(195.1±93.6)min。癥狀在術(shù)后明顯緩解,術(shù)中與術(shù)后5 d內(nèi)均未發(fā)生并發(fā)癥。共置入頸椎螺釘1160枚,螺釘分類為A類1030枚、B類115枚、C類15枚。螺釘位置優(yōu)秀率(A級)為88.8%,螺釘位置可接受率(A級+B級)為98.7%。 結(jié)論 導(dǎo)航與機器人系統(tǒng)輔助頸椎螺釘內(nèi)固定術(shù)的準(zhǔn)確性高、安全性好,是未來頸椎手術(shù)的發(fā)展方向。

Objective With the development of computer technology and industry, navigation and surgical robot systems are increasingly used in spine surgeries, because of their minimal invasiveness, short operation time, accuracy, stability and safety. This study retrospectively analyzed the clinical application of navigation and robot-assisted cervical screw placement, including accuracy and safety. Methods A total of 369 patients underwent navigation or robot-assisted cervical spine surgery at the Beijing Jishuitan Hospital between January 2006 and August 2019. The main measurements included the accuracy of screw placement, operation time, and complications within 5 days after surgery. The accuracy of screw placement was evaluated, according to the Gertzbein-Robbins classification criteria. Results All 369 patients completed their procedures, including 283 navigation guided procedures and 86 robot-assisted procedures. The operation time was 195.1±93.6 minutes. Symptoms were significantly relieved after surgery. No complications occurred during the surgery or within 5 days after surgery. A total of 1160 cervical screws were placed. 1030 screws were classified as Grade A, 115 as Grade B, and 15 as Grade C. The excellent screw position rate (Grade A) was 88.8%, and the acceptable rate (Grade A+B) was 98.7%. Conclusions Navigation and robotic system assisted cervical screw internal fixation is accurate and safe, and it is the direction for cervical spine surgery development.

參考文獻:

[1]        Liu CY, Zygourakis CC, Yoon S, et al. Trends in utilization and cost of cervical spine surgery using the national inpatient sample database, 2001 to 2013 [J]. Spine, 2017,42(15):E906-E913.

[2]        Marquez-Lara A, Nandyala SV, Fineberg SJ,et al. Current trends in demographics, practice, and in-hospital outcomes in cervical spine surgery: a national database analysis between 2002 and 2011 [J]. Spine, 2014,39(6):476-481.

[3]        Baird EO, Egorova NN, McAnany SJ,et al. National trends in outpatient surgical treatment of degenerative cervical spine disease [J]. Global Spine Journal, 2014,4(3):143-150.

[4]        Grob D, Jeanneret B, Aebi M, Markwalder TM. Atlanto-axial fusion with transarticular screw fixation [J]. Journal of Bone & Joint Surgery (Br), 1991,73(6):972-976.

[5]        Sheng SR, Wang XY, Xu HZ,et al. Anatomy of large animal spines and its comparison to the human spine: a systematic review [J]. European Spine Journal, 2010,19(1):46-56.

[6]        Rampersaud YR, Simon DA, Foley KT. Accuracy requirements for image-guided spinal pedicle screw placement [J]. Spine, 2001,26(4):352-359.

[7]        Tian W, Weng C, Li Q, et al. Occipital-C2 transarticular fixation for occipitocervical instability associated with occipitalization of the atlas in patients with klippel-feil syndrome, using intraoperative 3-dimensional navigation system [J]. Spine, 2013,38(8):642-649.

[8]        Wen BT, Chen ZQ, Sun CG, et al. Three-dimensional navigation (O-arm) versus fluoroscopy in the treatment of thoracic spinal stenosis with ultrasonic bone curette: a retrospective comparative study [J]. Medicine (Baltimore), 2019,98(20):e15647.

[9]        Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using o-arm, robotic guidance, or freehand technique: a comparative study [J]. Spine, 2018,43(6):E373-E378.

[10]      Lefranc M, Peltier J. Evaluation of the ROSA Spine robot for minimally invasive surgical procedures [J]. Expert Review of Medical Devices, 2016,13(10):899-906.

[11]      Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial [J/OL]. Journal of Neurosurgery Spine, 2019:1-8 [2019-08-02].https://www.ncbi.nlm.nih.gov/pubmed/30738398.

[12]      Zhang Q, Han XG, Xu YF, et al. Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease [J]. World Neurosurgery. 2019,125:e429-e434.

[13]      Tian W. Robot-assisted posterior C1-2 transarticular screw fixation for atlantoaxial instability: a case report [J]. Spine, 2016,41 Suppl 19:B2-B5.

[14]      Tian W, Wang H, Liu YJ. Robot-assisted anterior odontoid screw fixation: a case report [J]. Orthopaedic Surgery, 2016,8(3):400-404.

[15]      Tian W, Liu YJ, Liu B, et al. Guideline for posterior atlantoaxial internal fixation assisted by orthopaedic surgical robot [J]. Orthopaedic Surgery, 2019,11(2):160-166.

[16]      Gertzbein SD, Robbins SE. Accuracy of pedicular screw placement in vivo [J]. Spine, 1990,15(1):11-14.

[17]      Abumi K, Shono Y, Taneichi H, Ito M, Kaneda K. Correction of cervical kyphosis using pedicle screw fixation systems [J]. Spine, 1999,24(22):2389-2396.

[18]      Karaikovic EE, Yingsakmongkol W, Gaines RW, Jr. Accuracy of cervical pedicle screw placement using the funnel technique [J]. Spine, 2001,26(22):2456-2462.

[19].     Tian W, Lang Z. Placement of pedicle screws using three-dimensional fluoroscopy-based navigation in lumbar vertebrae with axial rotation [J]. European Spine Journal, 2010,19(11):1928-1935.

[20]      Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ. Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques [J]. Spine, 2000,25(13):1655-1667.

[21]      Rajasekaran S, Kanna PR, Shetty TA. Intra-operative computer navigation guided cervical pedicle screw insertion in thirty-three complex cervical spine deformities [J]. Journal of craniovertebral junction and spine, 2010,1(1):38-43.

[22]      Ishikawa Y, Kanemura T, Yoshida G, et al. Intraoperative, full-rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion [J]. Journal of Neurosurgery Spine, 2011,15(5):472-478.

[23]      韓巍, 王軍強, 林鴻, 等. 主從式長骨骨折復(fù)位機器人的實驗研究[J]. 北京生物醫(yī)學(xué)工程, 2015, 34(1):12-17.

      Han W,Wang JQ,Lin H,et al. Master-slave robot assisted fracture reduction in long bone shaft[J].Beijing  Biomedical Engineering, 2015, 34(1):12-17.

 

 

[24]    范明星, 劉亞軍, 段芳芳, 等. 機器人輔助胸腰椎椎弓根螺釘內(nèi)固定術(shù)的學(xué)習(xí)曲線和臨床意義[J]. 骨科臨床與研究雜志, 2018, 3(4):213-217.

       Fan MX,Liu YJ,Duan FF,et al. Learning curve and clinical outcomes of robot assisted thoracolumbar pedicle screw fixation[J]. 骨科臨床與研究雜志, 2018, 3(4):213-217.

[25]      黃小海, 喻洪流, 張偉勝, 等. 索控式中央驅(qū)動上肢康復(fù)機器人[J]. 北京生物醫(yī)學(xué)工程, 2018, 37(05):31-37.

       Huang XH,Yu HL,Zhang WS,et al. Center-driven upper limb rehabilitation robot for cable transmission[J].Beijing  Biomedical Engineering, 2018, 37(05):31-37.

[26]      Zamorano L, Li Q, Jain S, et al.Robotics in neurosurgery: state of the art and future technological challenges [J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2004,1(1):7-22.

[27]    田偉, 范明星, 劉亞軍. 脊柱導(dǎo)航輔助機器人技術(shù)的現(xiàn)狀及遠期展望[J]. 北京生物醫(yī)學(xué)工程, 2014, 33(5):527-531.

       Tian W,Fan MX,Liu YJ. Current status and long-term prospects in spinal navigation robot technology[J].Beijing  Biomedical Engineering, 2014, 33(5):527-531.

[28]      茅劍平, 范明星, 吳佳源, 等. 骨科機器人輔助齒狀突螺釘內(nèi)固定術(shù)9例報告[J]. 中國微創(chuàng)外科雜志, 2019,19(7):649-652.

       Mao JP,Fan MX,Wu JY,et al. Robot-assisted anterior odontoid screw fixation: report of 9 cases[J]. Chinese Journal of Minimally Invasive Surgery, 2019,19(7):649-652.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]