[1] 黃尤江, 賀蓮, 蘇煥群,等. 醫(yī)療大數(shù)據(jù)的應(yīng)用及其隱私保護(hù)[J]. 中華醫(yī)學(xué)圖書(shū)情報(bào)雜志, 2015, 24(9):43-45. Huang YJ, He L, Su HQ, et al. Application of big data in medical care and their privacy protection[J]. Chinese Journal of Medical Library and Information Science, 2015, 24(9):43-45 [2] 岳思,吳偉明,谷勇浩.數(shù)據(jù)發(fā)布中k-匿名隱私保護(hù)技術(shù)研究[J].軟件,2017,38(11):12-17. Yue S,Wu WM,Gu YH. Research on K-anonymous privacy protection technology in the data release[J]. Computer Engineering & Software,2017,38(11):12-17 [3] 何賢芒. 隱私保護(hù)中k-匿名算法和匿名技術(shù)研究[D]. 上海:復(fù)旦大學(xué), 2011. He XM. Study on K-anonymity algorithm and anonymity technology in privacy protection[D]. Shanghai:Fudan University, 2011. [4] El EK, Dankar FK, Issa R, et al. A globally optimal k-anonymity method for the de-identification of health data[J]. Journal of the American Medical Informatics Association Jamia, 2009, 16(5):670-682. [5] Nosowsky R, Giordano T J. The Health Insurance Portability and Accountability Act of 1996 (HIPAA) privacy rule: implications for clinical research[J]. Annual Review of Medicine, 2006, 57(1):575-590. [6] Johnson AEW , Pollard TJ , Shen L , et al. MIMIC-III, a freely accessible critical care database[J]. Scientific Data, 2016, 3:160035. [7] Douglass M , Cliffford G , Reisner A , et al. De-Identification algorithm for free-text nursing notes[J]. Computers in Cardiology , 2005,32:331 - 334. [8] Neamatullah I , Douglass MM , Lehman LWH , et al. Automated de-identification of free-text medical records[J]. BMC Medical Informatics and Decision Making, 2008, 8:32. [9] 徐益輝, 姚琴, 袁冬生. 中文醫(yī)療文本匿名化方法研究[J]. 中國(guó)數(shù)字醫(yī)學(xué), 2014, 9(7):19-21. Xu XH, Yao Q, Yuan DS. Study on the anonymization method of Chinese medical document[J]. China Digital Medicine, 2014, 9(7):19-21 [10] Uzuner O, Sibanda TC, Luo Y, et al. A de-identifier for medical discharge summaries[J]. Artificial Intelligence in Medicine, 2008, 42(1):13-35. [11] Y. Guo, R. Gaizauskas, I. Roberts, G et al. Identifying personal health information using support vector machines[C]. i2b2 workshop on challenges in natural language processing for clinical data, 2006,10-11. [12] Mcmurry AJ, Fitch B, Savova G, et al. Improved de-identification of physician notes through integrative modeling of both public and private medical text[J]. BMC Medical Informatics and Decision Making, 2013, 13:112. [13] He B , Guan Y , Cheng J , et al. CRFs based de-identification of medical records[J]. Journal of Biomedical Informatics, 2015, 58:S39-S46. [14] Liu Z, Chen Y, Tang B, et al. Automatic de-identification of electronic medical records using token-level and character-level conditional random fields[J]. Journal of Biomedical Informatics, 2015, 58(Suppl): S47-S52. [15] Sakharov A, Sakharov T. The Viterbi algorithm for subsets of stochastic context-free languages[J]. Information Processing Letters, 2018, 135:68-72. [16] 張華平, 劉群. 基于角色標(biāo)注的中國(guó)人名自動(dòng)識(shí)別研究[J]. 計(jì)算機(jī)學(xué)報(bào), 2004, 27(1):85-91. Zhang HP, Liu Q. Automatic recognition of chinese personal name based on role tagging[J]. Chinese Journal of Computers, 2004, 27(1):85-91
|