51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種高通量測(cè)量單細(xì)胞彈性模量的微流控芯片

A high-throughput microfluidic chip for trapping single cells and measuring single cells’ elastic moduli

作者: 袁闈墨  薛春東  劉波  覃開蓉 
單位:大連理工大學(xué)電子信息與電氣工程學(xué)部生物醫(yī)學(xué)工程學(xué)院( 遼寧大連 116024) 大連理工大學(xué)光電工程與儀器科學(xué)學(xué)院( 遼寧大連 116024)
關(guān)鍵詞: 微流控;  芯片實(shí)驗(yàn)室;  有限元分析;  生物力學(xué) 
分類號(hào): R318.6
出版年·卷·期(頁碼):2019·38·5(450-456)
摘要:

目的 設(shè)計(jì)微流控芯片以便高效簡(jiǎn)便地捕獲大量單細(xì)胞并測(cè)量其彈性模量。方法 根據(jù)流體力學(xué)原理,設(shè)計(jì)微流控陣列及其單細(xì)胞捕獲單元的通道結(jié)構(gòu)和幾何尺寸。培養(yǎng)海拉細(xì)胞,制作微流控芯片實(shí)物并采用該芯片進(jìn)行單細(xì)胞捕獲實(shí)驗(yàn)。采用COMSOL軟件對(duì)作用在被捕獲細(xì)胞上的剪切力和壓差進(jìn)行有限元仿真。根據(jù)作用在被捕獲細(xì)胞兩側(cè)的壓差值和細(xì)胞在捕獲通道中的伸長(zhǎng)長(zhǎng)度,計(jì)算出細(xì)胞的彈性模量。結(jié)果 所設(shè)計(jì)的微流控芯片能有效捕獲大量單細(xì)胞;計(jì)算的單細(xì)胞彈性模量為780.7Pa ± 100.5 Pa,與文獻(xiàn)中報(bào)道的763Pa ± 93 Pa接近。結(jié)論 本文所提出的微流控芯片可高效捕獲單細(xì)胞并測(cè)量單細(xì)胞力學(xué)特性。

Objective To design a microfluidic chip to efficiently and conveniently trap substantial single cells and measure single cells’ elastic moduli. Method Based on the principle of fluid mechanics, a microfluidic array and the structure and geometrical size of its single cell trapping unit were designed. Hela cells were cultured and maintained, the actual microfluidic chip was then fabricated to conduct the single cells trapping experiment. By using software COMSOL, finite element simulation was conducted to compute the shear stress and pressure drop across the trapped cells. The single cells’ elastic moduli were computed by the pressure drops across the trapped single cells and the cellular protrusion lengths in the trapping channels. Results Many single cells were able to be efficiently trapped in the microfluidic chip. The computed elastic moduli of single cells were 780.7 Pa± 100.5 Pa, which were close to the moduli 763Pa ± 93 Pa reported in the literature. Conclusions The microfluidic chip proposed in this study exhibites a high efficiency for single cells trapping and measurement of single cellular mechanical property.

參考文獻(xiàn):

[1] Pachenari M, Seyedpour SM, Janmaleki M, et al. Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: Investigating different grades of colon cancer cell lines[J]. Journal of Biomechanics, 2014, 47(2):373-379.

[2] Jing PF, Liu YN, Keeler EG, et al. Optical tweezers system for live stem cell organization at the single-cell level[J]. Biomedical Optics Express, 2018, 9(2):771–779.

[3] Hochmuth RM. Micropipette aspiration of living cells[J]. Journal of Biomechanics, 2000, 33(1):15-22.

[4] Lange JR, Metzner C, Richter S, et al. Unbiased High-Precision Cell Mechanical Measurements with Microconstrictions[J]. Biophysical Journal, 2017, 112(7):1472-1480.

[5] Li YJ, Yang YN, Zhang HJ, et al. A microfluidic micropipette aspiration device to study single-cell mechanics inspired by the principle of wheatstone bridge[J]. Micromachines, 2019, 10(2):131–142.

[6] Guo Q, Park S, Ma H. Microfluidic micropipette aspiration for measuring the deformability of single cells[J]. Lab on a Chip, 2012, 12(15):2687–2695.

[7] Lee LM, Liu AP. A microfluidic pipette array for mechanophenotyping of cancer cells and mechanical gating of mechanosensitive channels[J]. Lab on a Chip, 2014, 15.

[8] Czerwinska J, Pumpurus L, Rieger M, et al. Mobility and shape adaptation of neutrophil in the microchannel flow[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69(Complete):294-300.

[9] Deng Y, Davis SP, Yang F, et al. Inertial Micro?uidic Cell Stretcher (iMCS): Fully automated,

high-throughput, and near real-time cell mechanotyping[J]. Small, 2017:1700705.

[10] Yu M, Hou Y, Song R, et al. Tunable confinement for bridging single-cell manipulation and single-molecule DNA linearization[J]. Small, 2018:1800229.

[11] Narayanamurthy V, Nagarajan S, Khan AYF, et al. Microfluidic hydrodynamic trapping for single cell analysis: mechanisms, methods and applications[J]. Analytical Methods, 2017, 9(25):3751–3772.

[12] Tan WH, Takeuchi S. A Trap-and-release Integrated microfluidic system for dynamic microarray applications[J]. Proceedings of the National Academy of Sciences, 2007, 104(4):1146-1151.

[13] Kobel S, Valero A, Latt J, et al. Optimization of microfluidic single cell trapping for long-term on-chip culture[J]. Lab on a Chip, 2010, 10(7):857.

[14] Lawrenz A, Nason F, Cooper-White JJ. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells[J]. Biomicrofluidics, 2012, 6(2):433-441.

[15] 王雪莉, 錢翔, 謝振華, 等. 基于微流控芯片的姜黃素誘導(dǎo)MCF-7細(xì)胞凋亡的研究[J]. 北京生物醫(yī)學(xué)工程, 2011, 30(6):557–561.

Microfluidic chip-based apoptosis of MCF -7 induced by curcumin[J]. Beijing Biomedical Engineering, 2011, 30(6):557–561.

[16] Theret DP, Levesque MJ, Sato M, et al. The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements[J]. Journal of Biomechanical Engineering, 1988, 110(3):190.

[17] Raj A , Dixit M , Doble M , et al. A combined experimental and theoretical approach towards mechano-phenotyping of biological cells using a constricted microchannel[J]. Lab on a Chip, 2017, 17(21):3704–3716.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]