51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
訓(xùn)練軌跡對上肢肌肉協(xié)同的影響

The effect of training trajectories on upper limb muscle synergy

作者: 何勇  施長城  左國坤  馬冶浩  劉吉成 
單位:上海大學(xué)(上海 200444); 中國科學(xué)院寧波材料技術(shù)與工程研究所,慈溪生物醫(yī)學(xué)工程研究所(浙江寧波 315399); 中國科學(xué)院寧波材料技術(shù)與工程研究所,先進(jìn)制造技術(shù)研究所(浙江寧波 315201)
關(guān)鍵詞: 康復(fù)機器人;  肌肉協(xié)同;  訓(xùn)練軌跡;  非負(fù)矩陣算法 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·5(441-449)
摘要:

目的 通過分析康復(fù)機器人輔助訓(xùn)練過程中沿不同軌跡運動的上肢肌肉協(xié)同特性,探究運動軌跡對上肢肌肉骨骼特性的影響,為康復(fù)機器人訓(xùn)練軌跡優(yōu)化設(shè)計提供基礎(chǔ)實驗數(shù)據(jù)與指導(dǎo)。方法 首先在末端牽引式康復(fù)機器人系統(tǒng)中設(shè)計3種上肢運動訓(xùn)練軌跡(L1:直線,L2:弧線,L3:半圓),然后采集12名健康志愿者在沿3種訓(xùn)練軌跡上肢運動過程中的的表面肌電信號,并使用非負(fù)矩陣分解算法進(jìn)行肌肉協(xié)同特性的獲取,對不同軌跡組間肌肉協(xié)同結(jié)構(gòu)的相似系數(shù)、屈肌占比以及募集模式積分系數(shù)進(jìn)行對比分析,探討康復(fù)機器人不同訓(xùn)練軌跡對上肢肌肉骨骼特性的影響。結(jié)果 同一訓(xùn)練軌跡中各志愿者的肌肉協(xié)同結(jié)構(gòu)具有較高相似性(平均SI>0.81)。各軌跡組的肌肉協(xié)同結(jié)構(gòu)中的屈肌占比隨運動進(jìn)程逐漸增加。各軌跡組的肌肉協(xié)同募集模式均具有時序特性,前期伸肌起主要作用,后期屈肌起主要作用,中期屈肌占比隨軌跡曲率增加而增加。軌跡L1與L2、L2與L3協(xié)同結(jié)構(gòu)非常相似(SI >0.90),而L1與L3協(xié)同結(jié)構(gòu)較為相似(SI >0.75)。結(jié)論 康復(fù)機器人輔助上肢的訓(xùn)練軌跡對上肢肌肉特性有一定影響,不同訓(xùn)練軌跡帶來的肌肉協(xié)同結(jié)構(gòu)較為相似,但是運動過程中屈肌群占比及協(xié)同貢獻(xiàn)度會為了協(xié)調(diào)動作而發(fā)生變化。由此可推測不同訓(xùn)練軌跡對不同肌群的訓(xùn)練強度可能會有所不同。康復(fù)機器人訓(xùn)練軌跡設(shè)計需根據(jù)康復(fù)需求進(jìn)行優(yōu)化設(shè)計。

Objective By analyzing the muscle synergy characteristics of upper limb during rehabilitation robot-assisted training, the influence of the motion trajectories on upper limb musculoskeletal characteristics is explored,which provides the basic experimental data and guidance for the optimal design of the training trajectory of rehabilitation robot. Methods Firstly, three kinds of upper limb training trajectories (L1: straight line, L2: arc, L3: semicircle) were designed in the end-traction rehabilitation robot system. Then the surface electromyogram signals of 12 healthy volunteers during the upper limb movement along three training trajectories were collected, and the muscle synergy characteristics were obtained by non-negative matrix decomposition algorithm. The similarity coefficients, flexor ratio and recruitment mode integral coefficients of muscle synergy structure between different trajectory groups were compared and analyzed, and the influence of different training trajectories of rehabilitation robot on upper limb musculoskeletal system was studied. Results In the same training trajectory, the muscle synergy structure of each volunteer had a high similarity (average SI > 0.81). The ratio of flexors in the synergy structure of each trajectory group increased gradually with the movement process. The synergy recruitment mode of each trajectory group had the characteristics of time series. The extensor played a major role in the early stage, the flexor played a major role in the late stage, and the ratio of flexors increased with increasing of trajectory curvature in the middle stage. The synergy structures of L1 and L2, L2 and L3 were very similar respectively(SI > 0.90), while L1 and L3 were similar (SI > 0.75). Conclusions The rehabilitation robot-assisted upper limb training trajectory has a certain impact on the characteristics of upper limb muscles. Different training trajectories bring about similar muscle synergy structure, but the ratio of flexors and the contribution degree of muscle synergy will change in order to coordinate the movement. It can be inferred that different training trajectories may have different training intensities for different muscle groups. The trajectory design of rehabilitation robot needs to be optimized according to rehabilitation needs.

參考文獻(xiàn):

[1]     Maciejasz P, Eschweiler J, Gerlach-Hahn K, et al. A survey on robotic devices for upper limb rehabilitation[J]. Journal of Neuroengineering & Rehabilitation, 2014, 11: 3.

[2]     Marchalcrespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of Neuroengineering & Rehabilitation, 2009, 6(1): 20.

[3]     李娜, 崔志琴, 左國坤, 等. 基于末端牽引式康復(fù)機器人的定量化上肢運動功能評估研究[J]. 北京生物醫(yī)學(xué)工程, 2018, 2018(6): 581-588.

    Li N,Cui ZQ,Zuo GK,et al. Quantitative evaluation on upper limb motor function based on an end-effector rehabilitation robot[J].Beijing Biomedical Engineering, 2018, 2018(6): 581-588.

 [4]   Wisneski KJ, Johnson MJ. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks[J]. Journal of NeuroEngineering and Rehabilitation, 2007, 4: 7.

[5]     Vallery H, Van Asseldonk EH, Buss M, et al. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2009, 17(1): 23-30.

[6]    Krebs HI, Palazzolo JJ, Dipietro L, et al. Rehabilitation robotics: performance-based progressive robot-assisted therapy[J]. Autonomous Robots, 2003, 15(1): 7-20.

[7]     Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke[J]. Progress in Neurobiology, 2004, 73(1): 61-72.

[8]     D'avella A, Portone A, Fernandez L, et al. Control of fast-reaching movements by muscle synergy combinations[J]. Journal of Neuroscience, 2006, 26(30): 7791-7810.

[9]     Tresch M, Saltiel P, Bizzi E. The construction of movement by the spinal cord[J]. Nature Neuroscience, 1999, 2(2): 162-167.

[10]   D'avella A, Lacquaniti F. Control of reaching movements by muscle synergy combinations[J]. Frontiers in Computational Neuroscience, 2013, 7(42): 1-7.

[11]   Costa A, Itkonen M, Yamasaki H, et al. A novel approach to the segmentation of sEMG data based on the activation and deactivation of muscle synergies during movement[J]. IEEE Robotics & Automation Letters, 2018, 3(3): 1972-1977.

[12]   Bizzi E, Cheung VCK, D'avella A, et al. Combining modules for movement[J]. Brain Research Reviews, 2008, 57(1): 125-133.

[13]   Israely S, Leisman G, Machluf CC, et al. Muscle synergies control during hand-reaching tasks in multiple directions post-stroke[J]. Frontiers in Computational Neuroscience, 2018, 12(10): 1-16.

[14]   Li S, Zhuang C, Niu CM, et al. Evaluation of functional correlation of task-specific muscle synergies with motor performance in patients poststroke[J]. Frontiers in Neurology, 2017, 8: 337.

[15]   Chiavenna A, Scano A, Malosio M, et al. Assessing user transparency with muscle synergies during exoskeleton-assisted movements: A pilot study on the LIGHTarm device for neurorehabilitation[J]. Applied Bionics and Biomechanics, 2018, 2018: 7647562.

[16]   Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.

[17]   Tresch MC, Cheung VCK, Andrea DA. Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets[J]. Journal of Neurophysiology, 2006, 95(4): 2199-2212.

[18]   Hiep Vu Nguyen Sy, Nambu I, Wada Y. The adjustment of muscle synergy recruitment by controlling muscle contraction during the reaching movement[C]. Budapest:2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) ,2016: 000756-000761.

[19]   García-Cossio E, Broetz D, Birbaumer N, et al. Cortex integrity relevance in muscle synergies in severe chronic stroke[J]. Frontiers in Human Neuroscience, 2014, 8(10): 744.

[20]   Tang L, Li F, Cao S, et al. Muscle synergy analysis for similar upper limb motion tasks[C]. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 2014: 3590-3593.

[21]   Semprini M, Cuppone AV, Delis I, et al. Biofeedback signals for robotic rehabilitation: assessment of wrist muscle activation patterns in healthy humans[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2017, 25(7): 883-892.

[22]   Flanders M, Pellegrini JJ, Soechting JF. Spatial/temporal characteristics of a motor pattern for reaching[J]. Journal of Neurophysiology, 1994, 71(2): 811-813.

[23]   Scano A, Chiavenna A, Malosio M, et al. Muscle synergies-based characterization and clustering of Poststroke Patients in reaching Movements[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5: 62.

[24]   Cheung VCK, Lamberto P, Michela A, et al. Stability of muscle synergies for voluntary actions after cortical stroke in humans[J]. Proceedings of the National Academy of Sciences, 2009, 106(46): 19563-19568.

[25]   Vincent C K C, Andrea T, Michela A, et al. Muscle synergy patterns as physiological markers of motor cortical damage[J]. Proceedings of the National Academy of Sciences, 2012, 109(36): 14652-14656.

[26]   Ellis MD, Holubar BG, Ana Maria A, et al. Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke[J]. Muscle & Nerve, 2005, 32(2): 170-178.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]