51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
C形臂X光機(jī)的原位投影增強(qiáng)系統(tǒng)

A projection-augmented system for in situ projection for mobile C-arms

作者: 邢樹偉  丁輝  王廣志 
單位:清華大學(xué)醫(yī)學(xué)院生物醫(yī)學(xué)工程系(北京 100084)
關(guān)鍵詞: 移動C型臂X光機(jī);  投影增強(qiáng);  原位投影;  光路重合;  校正 
分類號:R318.6
出版年·卷·期(頁碼):2019·38·6(551-559)
摘要:

目的 移動C型臂X光機(jī)是微創(chuàng)骨科手術(shù)中必不可少的成像設(shè)備。針對當(dāng)前微創(chuàng)骨科手術(shù)需要反復(fù)透視和操作直觀性差的問題,本文提出一個針對移動C型臂X光機(jī)的原位投影增強(qiáng)系統(tǒng)。方法 首先設(shè)計了一種雙重反射的投影增強(qiáng)模塊;然后基于上述模塊,提出一種基于動態(tài)追蹤的系統(tǒng)標(biāo)定方法,以實(shí)現(xiàn)投影光路與X射線光路重合;接下來利用圖像的單應(yīng)性變換關(guān)系,分別對投影模塊與X射線成像模型間的幾何模型偏差和系統(tǒng)殘留偏差進(jìn)行校正,進(jìn)而優(yōu)化系統(tǒng)投影精度;最后構(gòu)建原型系統(tǒng),測試了系統(tǒng)性能并設(shè)計腰椎體膜和豬腿脛骨實(shí)驗(yàn)進(jìn)行驗(yàn)證。結(jié)果 在精度驗(yàn)證模體距影像探測器不同高度下,系統(tǒng)投影誤差為;固定驗(yàn)證模體,在移動C型臂X光機(jī)不同擺放角度下,系統(tǒng)投影誤差為。腰椎體膜和豬腿脛骨模體實(shí)驗(yàn)表明,可直接在患者體表觀察到患者骨骼等結(jié)構(gòu)的投影信息。結(jié)論 本文提出的移動C型臂X光機(jī)投影增強(qiáng)系統(tǒng),能夠原位投射患者透視影像,直觀地輔助醫(yī)生術(shù)中操作,減少了術(shù)中反復(fù)透視獲取手術(shù)工具和患者內(nèi)部結(jié)構(gòu)位置關(guān)系的次數(shù),顯示出系統(tǒng)未來臨床應(yīng)用的可行性。

Objective The mobile C-arm is an essential imaging device in minimally invasive orthopedic surgery. To reduce radiation exposure from frequently capturing X-ray images and improve unintuitive operations, we proposed a projection-augmented system for in situ projection for mobile C-arms. Methods First, we design a double projection projection-augmented module. Second, we propose a calibration method based on dynamic tracking to realize the alignment of X-ray and projection light. Third, the geometric model deviation and system residual deviation between the projection module and the X-ray imaging model are corrected by using the homography to improve projection accuracy. Finally, a prototype of the system was constructed, and performance tests and experiments of spine phantom and swine tibia were performed. Results The system overlay error is  at different heights from image intensifier to experiment phantom, and is  at different rotation angles of mobile C-arms. The experiments of spine phantom and swine tibia show that we can intuitively observe the projection information such as bone structure on the patients’ body surface. Conclusions The proposed projection-augmented system can project X-ray images onto patients in situ, and surgeons can perform intuitive operations and reduce X-ray radiation exposure. Furthermore, we verify the feasibility of our system by phantom experiments.


參考文獻(xiàn):

[1] Navab N, Heining SM, Traub J. Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications[J]. IEEE Transactions on Medical Imaging, 2010, 29(7): 1412-1423.

[2] Boszczyk BM, Bierschneider M, Panzer S, et al. Fluoroscopic radiation exposure of the kyphoplasty patient[J]. European Spine Journal, 2006, 15(3): 347-355.

[3] Synowitz M, Kiwit J. Surgeon’s radiation exposure during percutaneous vertebroplasty[J]. Journal of Neurosurgery: Spine, 2006, 4(2): 106-109.

[4] Bani-Kashemi A, Navab N, Mitschke M. Merging visible and invisible: two camera-augmented mobile C-arm (CAMC) applications[C]//IEEE Computer Society Second International Workshop on Augmented Reality. San Fransico, CA, USA: IEEE Presss, 1999: 134-141.

[5] Mitschke M, Bani-Hashemi A, Navab N. Interventions under video-augmented X-ray guidance: application to needle placement[C]// Medical Image Computing and Computing-Assisted Intervention (MICCAI). Pittsburgh, Pennsylvania, USA: MICCAI, 2000: 858-868.

[6] Fischer M, Fuerst B, Lee SC, et al. Preclinical usability study of multiple augmented reality concepts for K-wire placement[J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(6): 1007-1014.

[7] Wang X, Habert S, Berge CSZ, et al. Inverse visualization concept for RGB-D augmented C-arms[J]. Computers in Biology and Medicine, 2016, 77: 135-147.

[8] 許碩貴,何濱,沈麗萍. 無創(chuàng)式實(shí)時手術(shù)定位3D導(dǎo)航設(shè)備:中國, 201610659818.3[P]. 2019-01-04.

[9] 何濱. 附屬于C臂X光機(jī)的手術(shù)定位導(dǎo)航設(shè)備: 中國, 201210385980.2[P]. 2014-08-13.

[10] Zeng B, Meng F, Ding H, et al. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(8): 1355-1368.

[11] Ma L, Zhao Z, Chen F, et al. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(12): 2205-2215.

[12] Gavaghan K A, Peterhans M, Oliveira-Santos T, et al. A portable image overlay projection device for computer-aided open liver surgery[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(6): 1855-1864.

[13] Ouadah S, Stayman JW, Gang G, et al. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm[J]. Proceedings of SPIE, The International Society for Optical Engineering, 2015: 94151D.

[14] Kimura M, Mochimaru M, Kanade T. Projector calibration using arbitrary planes and calibrated camera[C]// IEEE Conference on Computer Vision and Pattern Recognition.  Minneapolis, MN, USA: IEEE Press, 2007: 1-2.

[15] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

[16] Tsai RY, Lenz RK. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3): 345-358.

[17] Park FC, Martin BJ. Robot sensor calibration: solving AX= XB on the Euclidean group[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5): 717-721.

[18] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. 2nd ed. Camebridge, New York, USA: Camebridge University Press, 2003: 163-165.

[19] Shapiro R. Direct linear transformation method for three-dimensional cinematography[J]. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 1978, 49(2): 197-205.

[20] Yaniv Z, Joskowicz L. Long bone panoramas from fluoroscopic X-ray images[J]. IEEE Transactions on Medical Imaging, 2004, 23(1): 26-35.

[21] Rampersaud Y, Simon D, Foley K. Accuracy requirements for image-guided spinal pedicle screw placement[J]. Spine, 2001, 26(4): 352-359.

[1] Navab N, Heining SM, Traub J. Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications[J]. IEEE Transactions on Medical Imaging, 2010, 29(7): 1412-1423.

[2] Boszczyk BM, Bierschneider M, Panzer S, et al. Fluoroscopic radiation exposure of the kyphoplasty patient[J]. European Spine Journal, 2006, 15(3): 347-355.

[3] Synowitz M, Kiwit J. Surgeon’s radiation exposure during percutaneous vertebroplasty[J]. Journal of Neurosurgery: Spine, 2006, 4(2): 106-109.

[4] Bani-Kashemi A, Navab N, Mitschke M. Merging visible and invisible: two camera-augmented mobile C-arm (CAMC) applications[C]//IEEE Computer Society Second International Workshop on Augmented Reality. San Fransico, CA, USA: IEEE Presss, 1999: 134-141.

[5] Mitschke M, Bani-Hashemi A, Navab N. Interventions under video-augmented X-ray guidance: application to needle placement[C]// Medical Image Computing and Computing-Assisted Intervention (MICCAI). Pittsburgh, Pennsylvania, USA: MICCAI, 2000: 858-868.

[6] Fischer M, Fuerst B, Lee SC, et al. Preclinical usability study of multiple augmented reality concepts for K-wire placement[J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(6): 1007-1014.

[7] Wang X, Habert S, Berge CSZ, et al. Inverse visualization concept for RGB-D augmented C-arms[J]. Computers in Biology and Medicine, 2016, 77: 135-147.

[8] 許碩貴,何濱,沈麗萍. 無創(chuàng)式實(shí)時手術(shù)定位3D導(dǎo)航設(shè)備:中國, 201610659818.3[P]. 2019-01-04.

[9] 何濱. 附屬于C臂X光機(jī)的手術(shù)定位導(dǎo)航設(shè)備: 中國, 201210385980.2[P]. 2014-08-13.

[10] Zeng B, Meng F, Ding H, et al. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(8): 1355-1368.

[11] Ma L, Zhao Z, Chen F, et al. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(12): 2205-2215.

[12] Gavaghan K A, Peterhans M, Oliveira-Santos T, et al. A portable image overlay projection device for computer-aided open liver surgery[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(6): 1855-1864.

[13] Ouadah S, Stayman JW, Gang G, et al. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm[J]. Proceedings of SPIE, The International Society for Optical Engineering, 2015: 94151D.

[14] Kimura M, Mochimaru M, Kanade T. Projector calibration using arbitrary planes and calibrated camera[C]// IEEE Conference on Computer Vision and Pattern Recognition.  Minneapolis, MN, USA: IEEE Press, 2007: 1-2.

[15] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

[16] Tsai RY, Lenz RK. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3): 345-358.

[17] Park FC, Martin BJ. Robot sensor calibration: solving AX= XB on the Euclidean group[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5): 717-721.

[18] Hartley R, Zisserman A. Multiple view geometry in computer vision[M]. 2nd ed. Camebridge, New York, USA: Camebridge University Press, 2003: 163-165.

 [19] Shapiro R. Direct linear transformation method for three-dimensional cinematography[J]. Research Quarterly. American Alliance for Health, Physical Education and Recreation, 1978, 49(2): 197-205.

[20] Yaniv Z, Joskowicz L. Long bone panoramas from fluoroscopic X-ray images[J]. IEEE Transactions on Medical Imaging, 2004, 23(1): 26-35.

[21] Rampersaud Y, Simon D, Foley K. Accuracy requirements for image-guided spinal pedicle screw placement[J]. Spine, 2001, 26(4): 352-359.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]