51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
冠狀動脈分叉病變單支架植入術(shù)后血流動力學(xué)分析

Hemodynamic analysis of coronary bifurcation lesion ofsingle stent implantation

作者: 劉玉倩  伍珩  李萌  舒麗霞  藺嫦燕 
單位:首都醫(yī)科大學(xué)附屬北京安貞醫(yī)院; 北京市心肺血管疾病研究所(北京;100029)
關(guān)鍵詞: 分叉病變;  冠狀動脈;  虛擬植入;  計算流體力學(xué);  單支架術(shù) 
分類號:R318.01
出版年·卷·期(頁碼):2019·38·6(583-589)
摘要:

目的 分叉病變在即刻手術(shù)成功率及遠(yuǎn)期心臟事件方面是最具有挑戰(zhàn)的冠脈病變之一。血流動力學(xué)對動脈粥樣硬化的形成有重要影響。對分叉病變單支架虛擬植入后的血流動力學(xué)參數(shù)分布進(jìn)行分析,探討其對支架后再狹窄的影響,可為臨床治療提供理論依據(jù)。方法 本文選取一例冠狀動脈分叉病變患者的冠狀動脈血管造影(computed tomography angiography, CTA)圖像,首先用Mimic軟件對所獲得冠脈CTA數(shù)據(jù)進(jìn)行三維重建得到冠脈血流區(qū)域,然后運用類似虛擬去除斑塊的方式建立不均勻壁厚血管壁模型,對所得模型在ABAQUS中進(jìn)行單支架虛擬植入,最后根據(jù)虛擬植入前、后的冠脈模型分別生成支架前和真實變形后的血流域有限元模型,并利用ANSYS軟件通過瞬態(tài)CFD分析模擬動脈血流的流動狀態(tài),獲得目標(biāo)血管段的血流動力學(xué)參數(shù)。結(jié)果 支架植入后與支架植入前相比,目標(biāo)血管段的血液流速、壁面剪切應(yīng)力均降低;支架植入后主支血管遠(yuǎn)端有振蕩的低剪切應(yīng)力區(qū)域;支架邊緣位置壁面剪切應(yīng)力低于其他位置;分支血管直徑變小;分支外側(cè)壁壁面剪切應(yīng)力低于內(nèi)側(cè)壁。結(jié)論 分叉病變的單支架植入可改善冠脈主支的狹窄,但術(shù)后主支血管遠(yuǎn)端振蕩的低剪切應(yīng)力區(qū)域、支架邊緣和邊支外側(cè)壁處的低壁面剪切應(yīng)力,以及斑塊和分叉嵴的移位有可能是分叉病變再狹窄的血流動力學(xué)機(jī)制。

Objective Bifurcation lesions are one of the most challenging coronary lesions in terms of immediate surgical success and long-term cardiac events. Hemodynamics has an important influence on the formation of atherosclerosis. The analysis of hemodynamic parameters can provide a theoretical basis for clinical treatment through the analysis of the distribution of hemodynamic parameters and the hemodynamic mechanism of coronary artery restenosis after single stenting. Methods A computed tomography angiography (CTA) image of a patient with coronary artery bifurcation lesions was performed. The coronary blood flow region was first reconstructed by using Mimic software. The model of uneven wall thickness was established by using similar methods to remove plaque, and then was virtually inserted into the ABAQUS. Finally, the finite element models of before and after virtual implantation were generated, and the hemodynamic parameters of the coronary bifurcation were simulated by transient CFD analysis with ANSYS software. Results Compared with before stent implantation, both of the blood flow velocity and wall shear stress of the coronary bifurcation periphery decreased. The distal end of the main branch vessel had an oscillating region of low shear stress. The shear stress of the bifurcated outer sidewall was lower than that of the inner sidewall. Furthermore the stent at the main branch vessel induced the displacements of plaque and bifurcation crest. Conclusions Stenting of bifurcation lesions can improve the main branch vessel lumen. However the low shear stress in the regions of the main branch distal end and the side branch, even the displacement of plaques and bifurcation crest may be the hemodynamic mechanism of restenosis in bifurcation lesions.

參考文獻(xiàn):

【1】 Serruys PW, Onuma Y, Garg S, et al. 5-Year clinical outcomes of the ARTS II(arterial revascularization therapies study II) of the sirolimus-eluting stent in the treatment of patients with multivessel de novo coronary artery lesions[J]. Journal of the American College of Cardiology, 2010, 55(11): 1093-1101.

【2】 Niccoli G, Ferrante G, Porto I, et al.Coronary bifurcation lesions: to stent one branch or both? A meta-analysis of patients treated with drug eluting stents[J]. International Journal of Cardiology, 2010, 139(1):80-91.

【3】 佟麗媛. 頸部血管動脈硬化斑塊與缺血性腦血管病的相關(guān)性分析[D]. 長春: 吉林大學(xué), 2013.

Tong LY. Correlation analysis of ischemic cerebrovascular disease and the neck vascular atheroscleroticsis plaques[D]. Changchun: Jilin University, 2013. 

【4】 Cecchi E, Giglioli C, Valente S.Role of hemodynamic shear stress in cardiovascular disease[J].Atherosclerosis,2011,214(2): 249-256.

【5】 Cao CG. Discovery of the role of wall shear in atherosclerosis[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009,29(2): 158-161.

【6】 劉有軍, 刁越, 高松. 血流動力學(xué)與動脈粥樣硬化(一)[J]. 北京生物醫(yī)學(xué)工程, 2004, 23(4): 293-295.

【7】 Banning AP, Lassen JF, Burzotta F, et al.Percutaneous coronary intervention for obstructive bifurcation lesions: the 14th consensus document from the European Bifurcation Club[J]. EuroIntervention, 2019, 15(1): 90-98.

【8】 任士卿,姜衛(wèi)劍,杜彬.腦血管成形術(shù)和支架植入術(shù)后高灌注綜合征[J]. 介入放射學(xué)雜志,2004,13(5):453-454.

【9】 徐洪增, 侯陽, 馬躍. 基于冠狀動脈CT血管造影的支架置入前后計算血流動力學(xué)技術(shù)[J]. 中國介入心臟病學(xué)雜志, 2017, 25(4): 237-240.

【10】 徐創(chuàng)業(yè). 冠脈球囊擴(kuò)張支架置入術(shù)中血管結(jié)構(gòu)和血流動力學(xué)分析[D].北京: 首都醫(yī)科大學(xué), 2017.

Xu CY. Sequential vascular structural and fluid dynamics analysis of balloon-expandable stent inside patient-specific coronary artery[D]. Beijing: Capital Medical University, 2017.

【11】 潘連強(qiáng), 劉玉倩, 吳廣輝, 等. 個體化冠脈分叉部位支架虛擬置入的有限元分析[J]. 醫(yī)用生物力學(xué), 2018, 33(增刊): 330-331.

【12】 Torii R, Wood NB, Hadjiloizou N, et al. Fluid–structure interaction analysis of a patient‐specific right coronary artery with physiological velocity and pressure waveforms[J]. International Journal for Numerical Methods in Biomedical Engineering, 2009, 25(5): 565-580.

【13】 何玉娜, 徐創(chuàng)業(yè), 劉修健, 等. 球囊配置對冠狀動脈支架擴(kuò)張和回彈行為的影響[J].中國生物醫(yī)學(xué)工程學(xué)報, 2016, 35(2): 177-183.

He YN, Xu CY, Liu XJ, et al. Effect of balloon configuration on coronary stent expansion and recoil[J].Chinese Journal of Biomedical Engineering, 2016, 35(2): 177-183.

【14】 潘連強(qiáng), 吳廣輝, 劉玉倩,等. 冠脈重疊支架虛擬置入的有限元分析[J]. 中國生物醫(yī)學(xué)工程學(xué)報, 2018, 37(5): 576-583.

Pan LQ, Wu GH, Liu YQ, et al. Finite element analysis of virtual implantation of coronary overlapped stent[J]. Chinese Journal of Biomedical Engineering, 2018, 37(5): 576-583.

【15】 Holzapfel GA, Sommer G, Gasser CT, et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling[J]. American Journal of Physiology Heart and Circulatory Physiology, 2005, 289(5):H2048-H2058.

【16】 Poncin P, Proft J. Stent tubing: understanding the desired attributes[C]// Proceedings of the Materials & Processes for Medical Devices Conference. Materials Park, OH, USA: ASM International, 2004: 253-259.

【17】 Chaniotis AK, Kaiktsis L, Katritsis D, et al. Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments[J]. Physica Medica, 2010, 26(3): 140-156.

【18】 Wentzel JJ, Krams R, Schuurbiers JC, et al.Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries[J].Circulation, 2001, 103(13): 1740-1745.

【19】 LaDisa Jr JF, Olson LE, Molthen RC, et al.Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries[J]. American Journal of Physiology Heart and Circulatory Physiology, 2005, 288(5): H2465-H2475.

【20】 Fujimoto M, Takao H, Suzuki T, et al.Temporal correlation between wall shear stress and in-stent stenosis after wingspan stent in swine model[J].AJNR. American Journal of Neuroradiology, 2014, 35(5): 994-998.

【21】 羅文香,程云章,胡嵬鋒, 等.冠狀動脈搭橋血流動力學(xué)數(shù)值模擬[J].生物醫(yī)學(xué)工程學(xué)進(jìn)展, 2014, 35(3): 125-128.

Luo WX, Cheng YZ, Hu WF, et al. Hemodynamic numerical simulation in coronary artery bypass graft[J]. Shanghai of Biomedical Engineering, 2014, 35(3): 125-128.

【22】 豐雷, 趙志勇, 王昊, 等. 界嵴角度對冠脈分叉病變介入治療時分支閉塞的影響[J]. 中國分子心臟病學(xué)雜志, 2017, 17(1):1961-1965.

Feng L, Zhao ZY, Wang H, et al. Hao carina angle impact the fate of side branch after main vessel stenting in coronary bifurcation intervention[J]. Molecular Cardiology of China, 2017, 17(1):1961-1965.


服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]