51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
球囊翼片數(shù)目對裝配后球囊支架系統(tǒng)性能的影響

Effect of balloon wing number on the performance of the assembled balloon expandable stent

作者: 艾澤琪    谷雪蓮    肖善社    姜洪焱 
單位:上海理工大學(xué)醫(yī)療器械與食品學(xué)院(上海 200093); 上海微創(chuàng)醫(yī)療器械(集團(tuán))有限公司(上海 201203)
關(guān)鍵詞: Pebax球囊;  冠脈支架;  球囊折疊數(shù)目;  有限元法 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·6(590-597)
摘要:

目的 分析球囊翼片數(shù)目對裝配后球囊支架系統(tǒng)性能的影響,為球囊支架裝配工藝以及球囊支架的后續(xù)設(shè)計(jì)結(jié)構(gòu)優(yōu)化提供理論支持。方法 首先對Pebax球囊材料樣本進(jìn)行拉伸試驗(yàn),得到軸向與周向應(yīng)力應(yīng)變曲線。然后采用抗拉性能弱的球囊周向應(yīng)力應(yīng)變曲線,構(gòu)建基于Yeoh模型的球囊材料本構(gòu)方程。之后使用SolidWorks軟件建立二翼、三翼、五翼球囊以及支架模型,利用ABAQUS軟件對球囊支架進(jìn)行吹塑以及壓握模擬,以球囊表面應(yīng)力、支架最終直徑作為球囊支架系統(tǒng)性能評價(jià)參數(shù)。最后利用水壓爆破儀和游標(biāo)卡尺來檢測裝配后球囊支架系統(tǒng)的爆破壓和直徑,驗(yàn)證有限元模擬的準(zhǔn)確性。并根據(jù)有限元的分析結(jié)果優(yōu)選出三翼和五翼球囊支架進(jìn)行抗脫載力實(shí)驗(yàn)對比分析。結(jié)果 仿真中球囊表面應(yīng)力集中在球囊褶皺位置,其中二翼球囊表面應(yīng)力最大。二翼、三翼、五翼球囊支架系統(tǒng)的最終直徑基本相同。實(shí)驗(yàn)結(jié)果與有限元模擬結(jié)果相一致。抗脫載力實(shí)驗(yàn)中五翼球囊支架抗脫載力較三翼球囊支架更大。結(jié)論 球囊翼片數(shù)目對裝配后球囊支架系統(tǒng)的性能影響顯著,五翼球囊支架系統(tǒng)在綜合性能評價(jià)上表現(xiàn)出優(yōu)勢。本研究可以指導(dǎo)球囊與支架裝配參數(shù)的調(diào)試以及球囊支架結(jié)構(gòu)的優(yōu)化設(shè)計(jì)。

Objective To analyze the influence from the balloon wing numbers on the performance of the assembled balloon expandable stents, and to provide theoretical support for the balloon stent assembly process and the optimization design of the balloon expandable stent. Methods Firstly, stress-strain curves in axial and hoop directions were obtained through tensile experiments of Pebax balloon sample. Then the material constitutive equation of balloon was established in finite element based on the Yeoh model according to the stress-strain curve of the balloon with weaker tensile strength in hoop direction. Moreover, the stent and balloon models with two-wing, three-wing, five-wing were established by SolidWorks. The process of compression and expanding behavior were simulated in ABAQUS, the parameters such as balloon stress and final diameter of the stent were to evaluate the performance of different balloon expandable stent. Finally, the burst pressure of assembled balloon expandable stents was tested by hydraulic blasting apparatus and the diameters of assembled balloon expandable stents were measured by a caliper to verify the accuracy of the finite element simulation. Based on the results of both simulation and experiment, the balloon expandable stent of three-wing and five-wing were selected for comparison test of anti-dislodgement force experiment. Results The stress concentrated on the position of folded area on the balloon surface. The two-wing balloon had larger stress on balloon surface than others. The final diameters of the two-wing balloon expandable stent was similar to the others. The experimental results were consistent with simulation results. In the anti-dislodgement force test, five-wing balloon expandable stent was better than three-wing balloon expanded stent. Conclusions The balloon wing number has a significant influence on the performance of the assembled balloon expandable stent. The five-wing balloon expandable stent shows the best performance in certain tests. The study promotes the adjustment of balloon expandable stent assembly process parameters and optimization design of balloon stent structure.

參考文獻(xiàn):

[1]申祥, 鄧永泉, 謝中敏, 等. 不同形狀血管中醫(yī)用支架擴(kuò)張力學(xué)行為的研究進(jìn)展[J]. 醫(yī)用生物力學(xué), 2017, 32(2):194-198.

Shen X, Deng YQ, Xie ZM, et al. Advances in expansion property of stent in vessels with different shapes[J]. Journal of Medical Biomechanics, 2017, 32(2):194-198.

[2]Martin D, Boyle F. Finite element analysis of balloon-expandable coronary stent deployment: Influence of angioplasty balloon configuration[J]. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(11):1161-1175.

[3]Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of crimping and inflation process of balloon expandable coronary stent using implicit solution[J]. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33(12): e2980.

[4]傅雪磊. 球囊成型工藝與過程數(shù)值模擬研究[D]. 北京: 北京化工大學(xué), 2017.

Fu XL. Study on numerical simulation and process of balloon molding[D]. Beijing: Beijing University of Chemical Technology, 2017.

[5]Singh V, Khare R, Chandra S, et al. Dislodgement of a sirolimus-eluting stent in the right coronary artery and its successful deployment with a small-balloon technique[J]. Journal of Indian College of Cardiology, 2014, 4(1): 44-46.

[6]Ragkousis GE, Curzen N, Bressloff NW. Computational modelling of multi-folded balloon delivery systems for coronary artery stenting: insights into patient-specific stent malapposition[J]. Annals of Biomedical Engineering, 2015, 43(8):1786-1802.

[7]王佳玲, 陳華予, 陳曦, 等. 冠脈支架膨脹過程的有限元模擬[J]. 材料導(dǎo)報(bào), 2009, 23(20):70-72, 97.

WANG JL, Chen HY, Chen X, et al. Finite element simulation of coronary stent expansion process[J]. Materials Review, 2009, 23(20):70-72, 97.

[8]江旭東, 馮海全, 胡志勇, 等. 球囊擴(kuò)張式冠脈支架的動靜態(tài)擴(kuò)張過程的變形機(jī)理研究[J]. 機(jī)械強(qiáng)度, 2012, 34(3): 450-454.

Jiang XD, Feng HQ, Hu ZY, et al. Research on deformation mechanism for balloon-expandable intracoronary stents in static and periodic expansion[J]. Journal of Mechanical Strength, 2012, 34(3): 450-454.

[9]毛志剛, 譚麗麗, 鄭豐,等. 無鎳不銹鋼冠脈支架力學(xué)行為的有限元模擬[J]. 材料研究學(xué)報(bào), 2012, 26(2):125-131.

Mao ZG, Tan LL, Zheng F, et al. Finite element analysis on mechanical behaviors of nickel-free stainless steel coronary stent[J]. Chinese Journal of Materials Research, 2012, 26(2):125-131.

[10]Beule MD. Finite element stent design[D]. Ghent: Ghent University, 2008.

[11]Ro AJ, Davé V. Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments[J]. Materials Science and Engineering: C, 2013, 33(2): 909-915.

[12]袁毅, 申開智. 雙向應(yīng)力場對HDPE1158分子取向結(jié)晶效果的影響[J]. 高分子材料科學(xué)與工程, 2010, 26(7): 90-92.

Yuan Y, Shen KZ. Effect of two-dimensional compound stress field on the molecule's orientation and crystallization of HDPE1158[J]. Polymer Materials Science and Engineering, 2010, 26(7): 90-92.

[13]Worth RA. Modification to weld lines in extruded thermoplastic pipe using a rotating die system[J]. Polymer Engineering and Science, 1980, 20(8): 551-554.

[14]León J, Roa GJ, Camacho F, et al. Trapping as retrieval technique to resolve a ruptured and entrapped coronary balloon catheter[J]. Catheterization and Cardiovascular Interventions, 2017, 90(5): 773-776.

[15]朱平, 董俠, 王篤金. 長碳鏈聚酰胺基熱塑性彈性體研究進(jìn)展[J]. 高分子通報(bào), 2016 (9): 171-181.

Zhu P, Dong X, Wang DJ. Research progress of long carbon chain polyamide based thermoplastic elastomers[J]. Chinese Polymer Bulletin, 2016 (9): 171-181.

[16]章凱. 雙向拉伸塑料薄膜橫拉成型的數(shù)值模擬研究[D]. 南昌: 南昌大學(xué), 2006.

Zhang K. Numerical simulation of breadthwise strething process of biaxially oriented plastic film[D]. Nanchang: Nanchang University, 2006.

[17]Erwin L, Pollock MA, Gonzalez H. Blowing of oriented PET bottles: predictions of free blown size and shape[J]. Polymer Engineering and Science, 2004, 23(15):826-829.

[18]Martin L, Straeovsky D, Laroche D, et a1. Modeling and experimental validation of the stretch blow molding of PET[C]// ANTEC 1999. New York City, NY, USA: ANTEC, 1999:14-22.

[19]Poncin P, Proft J. Stent tubing: understanding the desired attributes[C]//Medical Device Materials: Proceedings of the Materials & Processes for Medical Devices Conference. Materials Park, OH: ASM International, 2004: 253-259.

[20]于凱, 谷雪蓮, 胡方遒, 等.波峰數(shù)目對Z型覆膜支架生物力學(xué)性能影響[J]. 醫(yī)用生物力學(xué), 2017, 32(2): 115-121.

Yu K, Gu XL, Hu FQ, et al. Effects of strut numbers on biomechanical properties of Z-shaped stent-grafts[J]. Journal of Medical Biomechanics, 2017, 32(2): 115-121.

[21]Martin D, Boyle F. Finite element analysis of balloon-expandable coronary stent deployment: Influence of angioplasty balloon configuration[J]. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(11): 1161-1175.

[22]Takeuchi M, Yoshitani H, Miyazaki C, et al. Relationship between the number of coronary risk factors and coronary atherosclerosis assessed by high-frequency transthoracic echocardiography[J]. Journal of the American Society of Echocardiography, 2006, 19(8): 1056-1062.

[23]毛志剛. AZ31鎂合金冠脈支架力學(xué)行為的有限元模擬[D]. 南京: 南京理工大學(xué), 2012.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]