51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
角膜膠原交聯(lián)后應(yīng)力重分布的有限元研究

Finite element analysis of stress redistribution after corneal collagen cross-linking

作者: 于夢(mèng)瑤  秦曉張海霞  李林 
單位:首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院; 首都醫(yī)科大學(xué)臨床生物力學(xué)應(yīng)用基礎(chǔ)研究北京市重點(diǎn)實(shí)驗(yàn)室(北京100069)
關(guān)鍵詞: 角膜膠原交聯(lián);  應(yīng)力分布;  有限元方法 
分類號(hào):R318.01
出版年·卷·期(頁碼):2019·38·6(598-604)
摘要:

目的 利用有限元的方法,探索角膜膠原交聯(lián)手術(shù)后基質(zhì)層中應(yīng)力再分布的規(guī)律。方法 通過提取正常兔眼角膜OCT圖像的輪廓,建立軸對(duì)稱的分區(qū)分層幾何模型,賦予幾何模型不同分布規(guī)律的彈性模量,探究交聯(lián)后局部力學(xué)性質(zhì)改變對(duì)于應(yīng)力在角膜中再分布規(guī)律的影響。結(jié)果 交聯(lián)導(dǎo)致的力學(xué)性質(zhì)的改變對(duì)于角膜基質(zhì)層中應(yīng)力的分布有顯著影響,交聯(lián)模型中央交聯(lián)區(qū)域及交界區(qū)域前基質(zhì)層的應(yīng)力顯著上升,比非交聯(lián)模型提高20%~40%,后基質(zhì)層的應(yīng)力明顯下降,比非交聯(lián)模型降低10%~15%。結(jié)論 交聯(lián)術(shù)后角膜中央?yún)^(qū)域力學(xué)性質(zhì)增強(qiáng)會(huì)改變基質(zhì)層內(nèi)應(yīng)力分布的規(guī)律,使得原有的應(yīng)力沿角膜深度方向和沿角膜中央向邊緣方向近似線性遞增的規(guī)律消失,應(yīng)力在深度方向的分布更加均勻。

Objective To explore the stress redistribution in corneal stroma after collagen cross-linking surgery by finite element method. Methods By extracting the contour of normal rabbit corneal OCT images, an axisymmetric hierarchical geometric model was established, and the elastic modulus of the geometric model with different distribution laws was given to explore the effect of local mechanical properties on the redistribution of stress in cornea after crosslinking. Results The stress distribution in corneal stroma was significantly affected by the change of mechanical properties caused by cross-linking. The stress in the central cross-linking area and the anterior stroma in the junction area of the cross-linking model increased by 20%-40% compared with the non-cross-linking model, and the stress in the posterior stroma decreased by 10%-15% compared with the non-cross-linking model. Conclusions After cross-linking, the enhancement of mechanical properties in the central corneal region may change the distribution of stress in the stroma and make the distribution of stress more uniform in the depth direction. The law that the stress increases linearly along the depth and from the center to the edge disappears.

參考文獻(xiàn):

[1] Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion[J]. Current Eye Research, 2004, 29(1):35-40.

[2] Kling S, Ginis H, Marcos S. Corneal biomechanical properties from two-dimensional corneal flap extensiometry: application to UV-riboflavin cross-linking[J]. Investigative Ophthalmology & Visual Science, 2012, 53(8): 5010-5015.

[3] 田磊. 在體角膜生物力學(xué)測(cè)量方法的建立與臨床應(yīng)用及京尼平兔角膜交聯(lián)的初步研究[D]. 北京:中國人民解放軍醫(yī)學(xué)院, 2014.

Tian L. Establishment and clinical application of in vivo corneal biomechanical measurement methods and preliminary study of genipin cross-linking on rabbit cornea[D]. Beijing: The General Hospital of the People's Liberation Army, 2014.

[4] Zhang X, Yin Y, Guo Y, et al. Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties[J]. Ultrasound in Medicine & Biology, 2015, 41(5):1461-1472.

[5] Dias J, Diakonis VF, Lorenzo M, et al. Corneal stromal elasticity and viscoelasticity assessed by atomic force microscopy after different cross linking protocols[J]. Experimental Eye Research, 2015, 138:1-5.

[6] Singh M, Li J, Han Z, et al. Evaluating the effects of riboflavin/UV-A and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography[J]. Investigative Ophthalmology & Visual Science, 2016, 57(9):OCT112-OCT120.

[7] Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin–ultraviolet-A-induced cross-linking[J]. Journal of Cataract and Refractive Surgery, 2003, 29(9):1780-1785.

[8] Wollensak G, Iomdina E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking[J]. Acta Ophthalmologica Scandinavica, 2009, 87(1):48-51.

[9] 張鵬鵬. 基于超聲開放系統(tǒng)的角膜粘彈性定量測(cè)量與成像研究[D]. 深圳:深圳大學(xué), 2017.

[10] 蘭偉偉, 李曉娜, 陳維毅, 等. 機(jī)械牽拉與前列腺素E2聯(lián)合作用下調(diào)圓錐角膜成纖維細(xì)胞賴氨酰氧化酶家族基因表達(dá)[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2017,34(2): 239-245.

Lan WW, Li XN, Chen WY, et al. Gene expression of down-regulation of lysyl oxidases family in keratoconus corneal fibroblasts induced by combination of mechanical stretching and prostaglandin E2[J]. Journal of Biomedical Engineering, 2017, 34(2): 239-245.

[11] 姚艷, 馮鵬飛, 李曉娜, 等. 周期性牽拉與TNF-α對(duì)角膜成纖維細(xì)胞增殖的影響[J]. 太原理工大學(xué)學(xué)報(bào), 2016, 47(1): 108-112.

Yao Y, Feng PF, Li XN, et al. Effects of cyclic stretch and TNF-α on cell proliferation of corneal fibroblasts[J]. Journal of Taiyuan University of Technology, 2016, 47(1): 108-112.

[12] Liu C, Feng P, Li X, et al. Expression of MMP-2, MT1-MMP, and TIMP-2 by cultured rabbit corneal fibroblasts under mechanical stretch[J]. Experimental Biology and Medicine, 2014, 239(8): 907-912.

[13] 蘭偉偉. 非酶糖基化交聯(lián)水凝膠基底對(duì)角膜成纖維細(xì)胞行為影響的體外研究[D]. 太原:太原理工大學(xué), 2017.

Lan WW. The influence of collagen hydrogel substrate cross-linked by non-enzymatic glycation on corneal fibroblasts behavior in vitro [D]. Taiyuan: Taiyuan University of Technology, 2017.

[14] Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line[J]. Cornea, 2006, 25(9):1057-1059.

[15] Kymionis GD, Tsoulnaras KI, Grentzelos MA, et al. Evaluation of corneal stromal demarcation line depth following standard and a modified-accelerated collagen cross-linking protocol[J]. American Journal of Ophthalmology, 2014, 158(4):671-675.e1.

[16] Kymionis GD, Tsoulnaras KI, Liakopoulos DA, et al. Corneal stromal demarcation line determined with anterior segment optical coherence tomography following a very high intensity corneal collagen cross-linking protocol[J]. Cornea, 2015, 34(6): 664-667.

[17] Yam J CS, Chan CWN, Cheng ACK. Corneal collagen cross-linking demarcation line depth assessed by visante OCT after CXL for keratoconus and corneal ectasia[J]. Journal of Refractive Surgery, 2012, 28(7):475-481.

[18] 劉兵. 基于有限元方法的角膜屈光手術(shù)分析[D].廈門: 廈門大學(xué), 2009.

Liu B. The analysis of cornea refractive surgery based on the finite element method[D]. Xiamen: Xiamen University, 2009.

[19] 祝雅利, 陳維毅. LASIK術(shù)后眼球受力變形的有限元模擬研究[J]. 太原理工大學(xué)學(xué)報(bào), 2008, 39(S1): 257-260.

Zhu YL, Chen WY. The simulation study on the finite element analysis of the eyeball deformation after LASIK[J]. Journal of Taiyuan University of Technology, 2008, 39(S1): 257-260.

[20] Zhang D, Sun T, Zhang H, et al. The simulation study on the deformation of rabbit cornea after refractive surgery with different cutting thickness[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(8): 1750118.

[21] Kling S, Remón L, Pérez-Escudero A, et al. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments[J]. Investigative Ophthalmology & Visual Science, 2014, 51(8): 3961-3968.

[22] 田磊, 韓為, 秦曉, 等.基于超聲壓痕技術(shù)的兔角膜生物力學(xué)特性[J].北京生物醫(yī)學(xué)工程, 2019, 38(2): 159-165.

Tian L, Han W, Qin X, et al. Biomechanical properties of rabbit cornea based on ultrasonic indentation[J]. Beijing Biomedical Engineering, 2019, 38(2): 159-165.

[23] Wang X, Li X, Chen W, et al. Effects of ablation depth and repair time on the corneal elastic modulus after laser in situ keratomileusis[J]. BioMedical Engineering OnLine, 2017, 16: 20.

[24] 謝毅, 樊瑜波, 鄧應(yīng)平,等. 兔眼準(zhǔn)分子激光原位角膜磨鑲術(shù)后角膜擴(kuò)張的研究[J]. 生物醫(yī)學(xué)工程研究, 2008, 27(1):19-22,30.

Xie Y, Fan YB, Deng YP, et al. The research of post -LASIK keratectasia in rabbits′eyes after LASIK surgery[J]. Journal of Biomedical Engineering Research, 2008, 27(1):19-22, 30.

[25] 孫太鳳, 王慧枝, 穆晶,等. 基于整體角膜膨脹實(shí)驗(yàn)對(duì)兔眼角膜參數(shù)的確定[J]. 北京生物醫(yī)學(xué)工程, 2016, 35(2):191-197.

Sun TF, Wang HZ, Mu J, et al. Determining the biomechanical properties of rabbit cornea with inflation tests[J]. Beijing Biomedical Engineering, 2016, 35(2): 191-197.

[26] 李智冬, 包芳軍, 王勤美,等. 基于角膜生物力學(xué)性能的散光性角膜切開術(shù)有限元分析[J]. 中華眼科雜志, 2016, 52(9): 674-680.

Li ZD, Bao FJ, Wang QM, et al. Finite element analysis of astigmatic keratotomy based on corneal biomechanical properties[J]. Chinese Journal of Ophthalmology, 2016, 52(9): 674-680.

[27] Du GL, Chen WY, Li XN, et al. Induction of MMP-1 and -3 by cyclical mechanical stretch is mediated by IL-6 in cultured fibroblasts of keratoconus[J]. Molecular Medicine Reports, 2017, 15(6):3885-3892.

[28] Sinha Roy A, Dupps WJ, Roberts CJ. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis[J]. Journal of Cataract and Refractive Surgery, 2014, 40(6):971-980.

[29] Whitford C, Movchan NV, Studer H, et al. A viscoelastic anisotropic hyperelastic constitutive model of the human cornea[J]. Biomechanics and Modeling in Mechanobiology, 2018, 17(1): 19-29.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]