[1]陳偉偉, 高潤霖, 劉力生,等. 中國心血管病報告2016概要[J]. 中國循環(huán)雜志, 2017, 32(6): 521-530. [2]Wampler R, Lancisi D, Indravudh V, et al. A sealless centrifugal blood pump with passive magnetic and hydrodynamic bearings[J]. Artificial Organs, 1999, 23(8):780-784. [3]Bertram CD, Qian Y, Reizes JA. Computational fluid dynamics performances prediction for the hydrodynamic bearings of the VentrAssist rotary blood pump[J]. Artificial Organs, 2001, 25(5): 348–357. [4]Kink T, Reul H. Concept for a new hydrodynamic blood bearing for miniature blood pumps[J]. Artificial Organs, 2004, 28(10):916-920. [5]Chan WK, Akamatsu T, Li HD. Analytical investigation of leakage flow in disk clearance of a magnetically suspended centrifugal impeller[J]. Artificial Organs, 2010, 24(9):734-742. [6]Muijderman EA. Analysis and design of spiral-groove bearings[J]. Tribology, 1968, 1(1): 63. [7]Yamane T, Maruyama O, Nishida M, et al. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump[J]. Journal of Artificial Organs, 2007, 10(2):71-76. [8]Stepanoff AJ. Centrifugal and axial flow pumps[M]. New York: John Wiley & Sons, Inc., 1957. [9]陳建中,張錫文,趙春章,等.微型軸流血泵溶血的數(shù)值模擬[J].北京生物醫(yī)學(xué)工程,2007,26(2):117-119, 128.
[10]Giersiepen M, Wurzinger LJ, Opitz R, et al. Estimation of shear stress—related blood damage in heart valve prostheses in vitro comparison of 25 aortic valves[J]. The International Journal of Artificial Oragans, 1990, 13 (5):300-306. [11]Blackshear PL Jr, Dorman FD, Steinbach JH. Some mechanical effects that influence hemolysis[J]. Transactions-American Society for Artificial Internal Organs, 1965, 11: 112-117. [12]Garon A, Farinas MI. Fast three-dimensional numerical hemolysis approximation[J]. Artifical Organs, 2004, 28(11): 1016-1025. [13]Gu L, Smith WA. Evaluation of computational models for hemolysis estimation[J]. ASAIO Journal, 2005, 51(3): 202-207. [14]王芳群,曾培,茹偉民,等. 應(yīng)用CFD研究葉輪設(shè)計對人工心臟泵內(nèi)流場的影響[J].中國生物醫(yī)學(xué)工程學(xué)報,2005,24(5):578-582.
[15]Han Q, Zou J, Ruan X, et al. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump[J]. Artificial Organs, 2012, 36(8):739-746 [16]Amaral F, Gross-Hardt S, Timms D, et al. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump[J]. Artificial Organs, 2013, 37(10): 866-874. [17]李衛(wèi)東, 姚奇, 杜建軍, 等. 基于CFD的液懸浮人工心臟泵葉輪入口優(yōu)化分析[J]. 北京生物醫(yī)學(xué)工程, 2017,36(1): 21-28,54. Li WD, Yao Q, Du JJ, et al. Optimization analysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD [J]. Beijing Biomedical Engineering, 2017,36(1):21-28,54.
|