51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
血液泵液體潤滑螺旋槽止推軸承承載及溶血性能研究

Bearingand hemolytic performancesof hydrodynamic spiral groove thrust bearing for blood pump

作者: 尹紅磊  肖艷萍杜建軍 
單位:哈爾濱工業(yè)大學(xué)(深圳)機電工程與自動化學(xué)院(廣東深圳 518055)
關(guān)鍵詞: 人工心臟;  液力軸承;  螺旋槽軸承;  血液相容性 
分類號:R318.04
出版年·卷·期(頁碼):2019·38·6(623-633)
摘要:

目的 針對血液泵用的血液潤滑止推軸承的平面線型,提出了一種雙圓弧線平面線型,以提高止推軸承的承載性能和血液泵血液相容性。方法 基于N-S方程和k-ε標(biāo)準方程湍流模型,采用Fluent軟件數(shù)值計算的方式,將這種線型的軸承與傳統(tǒng)的對數(shù)螺旋線型以及斜直線型軸承進行了承載力、剛度、壁面切應(yīng)力、質(zhì)量流量和溶血指標(biāo)的對比,對雙圓弧線型螺旋槽止推軸承的槽數(shù)、槽深、槽長比等參數(shù)進行了優(yōu)化以提高軸承支承力。結(jié)果 雙圓弧線型的螺旋槽止推軸承具有良好的承載能力,且質(zhì)量流量較大,壁面剪切應(yīng)力小,在血液相容性方面比其他兩種軸承更有優(yōu)勢。優(yōu)化后的雙圓弧線型螺旋槽止推軸承的溶血性能均滿足要求。結(jié)論 對于微米級厚度的螺旋槽止推軸承,在滿足軸承性能和溶血性能的基礎(chǔ)上,為方便加工,應(yīng)優(yōu)先選取雙圓弧線型的螺旋槽止推軸承。

Objective In order to improve the bearing capacity of thrust bearing and the compatibility of blood pump, a new type of double arc-shaped thrust bearing which is used in the blood pump thrust is proposed. Methods Based on Navier-Stokes equation and k - epsilon standard equation turbulent model, the numerical calculation method of Fluent software was adopted to compare the bearing capacity, stiffness, wall shear stress, mass flow and hemolysis indexes of this type of linear bearing with the traditional logarithmic spiral type bearing and oblique linear type bearing, and to optimize the parameters such as groove number, groove depth and groove length ratio of double-arc spiral groove thrust bearing. Results The double circular arc spiral groove thrust bearing had good load-carrying capacity, and the characteristics of large mass flow and small wall shear stress made the bearing more advantageous in blood compatibility than the other two kinds of bearings. The hemolysis performance of the optimized double arc-shaped spiral groove thrust bearing met the requirements. Conclusions For micron thickness spiral groove thrust bearing, on the basis of meeting the requirements of bearing performance and hemolysis performance, we should give priority to double arc type spiral groove thrust bearing to facilitate processing.

參考文獻:

[1]陳偉偉, 高潤霖, 劉力生,等. 中國心血管病報告2016概要[J]. 中國循環(huán)雜志, 2017, 32(6): 521-530.

[2]Wampler R, Lancisi D, Indravudh V, et al. A sealless centrifugal blood pump with passive magnetic and hydrodynamic bearings[J]. Artificial Organs, 1999, 23(8):780-784.

[3]Bertram CD, Qian Y, Reizes JA. Computational fluid dynamics performances prediction for the hydrodynamic bearings of the VentrAssist rotary blood pump[J]. Artificial Organs, 2001, 25(5): 348–357.

[4]Kink T, Reul H. Concept for a new hydrodynamic blood bearing for miniature blood pumps[J]. Artificial Organs, 2004, 28(10):916-920.

[5]Chan WK, Akamatsu T, Li HD. Analytical investigation of leakage flow in disk clearance of a magnetically suspended centrifugal impeller[J]. Artificial Organs, 2010, 24(9):734-742.

[6]Muijderman EA. Analysis and design of spiral-groove bearings[J]. Tribology, 1968, 1(1): 63.

[7]Yamane T, Maruyama O, Nishida M, et al. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump[J]. Journal of Artificial Organs, 2007, 10(2):71-76.

[8]Stepanoff AJ. Centrifugal and axial flow pumps[M]. New York: John Wiley & Sons, Inc., 1957.

[9]陳建中,張錫文,趙春章,等.微型軸流血泵溶血的數(shù)值模擬[J].北京生物醫(yī)學(xué)工程,2007,26(2):117-119, 128.

[10]Giersiepen M, Wurzinger LJ, Opitz R, et al. Estimation of shear stress—related blood damage in heart valve prostheses in vitro comparison of 25 aortic valves[J]. The International Journal of Artificial Oragans, 1990, 13 (5):300-306.

[11]Blackshear PL Jr, Dorman FD, Steinbach JH. Some mechanical effects that influence hemolysis[J]. Transactions-American Society for Artificial Internal Organs, 1965, 11: 112-117.

[12]Garon A, Farinas MI. Fast three-dimensional numerical hemolysis approximation[J]. Artifical Organs, 2004, 28(11): 1016-1025.

[13]Gu L, Smith WA. Evaluation of computational models for hemolysis estimation[J]. ASAIO Journal, 2005, 51(3): 202-207.

[14]王芳群,曾培,茹偉民,等. 應(yīng)用CFD研究葉輪設(shè)計對人工心臟泵內(nèi)流場的影響[J].中國生物醫(yī)學(xué)工程學(xué)報,2005,24(5):578-582.

[15]Han Q, Zou J, Ruan X, et al. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump[J]. Artificial Organs, 2012, 36(8):739-746

[16]Amaral F, Gross-Hardt S, Timms D, et al. The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump[J]. Artificial Organs, 2013, 37(10): 866-874.

[17]李衛(wèi)東, 姚奇, 杜建軍, 等. 基于CFD的液懸浮人工心臟泵葉輪入口優(yōu)化分析[J]. 北京生物醫(yī)學(xué)工程, 2017,36(1): 21-28,54. 

Li WD, Yao Q, Du JJ, et al. Optimization analysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD [J]. Beijing Biomedical Engineering, 2017,36(1):21-28,54.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]