51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于計算機視覺的面癱客觀評價方法的研究進展

Research progress on objective assessment methods of facial paralysis based on computer vision

作者: 馮佳玲    翁曉紅    國哲驍    但果 
單位:深圳大學醫(yī)學部生物醫(yī)學工程學院(廣東深圳 518000); 中國科協(xié)學會服務中心(北京 100081)
關鍵詞: 面癱;  計算機視覺;  客觀評價 
分類號:R318
出版年·卷·期(頁碼):2019·38·6(634-638)
摘要:

及時準確地評價面癱患者的面神經(jīng)損傷程度,有助于醫(yī)生為患者選擇合適的治療和康復方案。臨床常用的人工量表評價法過于主觀,而基于計算機視覺的面癱評價方法更加客觀。本文以利用計算機視覺對面癱進行客觀評價的研究進展為主要內(nèi)容,從面部特征的提取,面部不對稱性的量化和面癱程度的自動評價等方面出發(fā),分析了特征點法、局部區(qū)域法、表情法和神經(jīng)網(wǎng)絡法這四種評價方法的發(fā)展與不足,并對面癱的客觀評價方法的發(fā)展趨勢進行了展望。

A timely and accurate evaluation of the degree of facial nerve injury is helpful for doctors to choose the appropriate treatment and rehabilitation program for patients with facial paralysis. The commonly used evaluation method is highly subjective, while the evaluation method based on computer vision is more objective. In this paper, the research progress of objective evaluation method by computer vision is taken as the main content. We summarize the development and deficiency of the facial feature point method, local area method, expression method and neural network method from the aspects of facial feature extraction, the quantification of facial asymmetry and the automatic evaluation of facial paralysis severity. And we prospect the development trend of the objective evaluation method.

參考文獻:

[1] Farahvash MR, Yaghoobi A, Farahvash B, et al. The extratemporal facial nerve and its branches: analysis of 42 hemifacial dissections in fresh Persian (Iranian) cadavers[J]. Aesthetic Surgery Journal, 2013, 33(2):201-208.

[2] 馮殿恩, 靳令經(jīng), 王鵬. 面癱與面肌痙攣[M].上海: 上海科學技術出版社, 2011.

[3] 金炳旭, 唐純志. 針灸治療周圍性面癱研究進展[J]. 甘肅中醫(yī), 2005, 18(5):28-30.

        

[4] Mishima K, Sugahara T. Review article: analysis methods for facial motion[J]. Japanese Dental Science Review, 2009, 45(1): 4-13.

[5] Zhai MY, Feng GD, Gao ZQ. Facial grading system: physical and psychological impairments to be considered[J]. Journal of Otology, 2008, 3(2): 61-67.

[6] Hashmat P. Determining normal and abnormal lip shapes during movement for use as a surgical outcome measure[D]. Cardiff, UK: Cardiff University, 2012.

[7] 楊萬章, 吳芳, 張敏. 周圍性面神經(jīng)麻痹的中西醫(yī)結合評定及療效標準 (草案)[J]. 中西醫(yī)結合心腦血管病雜志, 2005, 3(9):786-787.

    

[8] Li Y, Feng GD, Tian X, et al. Agreement between house-brackmann grading system and facial nerve grading system 2.0 in patients with facial nerve paralysis[J]. Chinese Journal of Otology, 2014, 12(3): 361.

[9] 李雪,廖品東,羅敏,等. 評價周圍性面癱的“口眼喎僻度指數(shù)”研究[J]. 中國針灸,2011,31(9):837-839.

Li X, Liao PD,Luo M, et al. Deviation index of eye and mouth on peripheral facial paralysis [J].Chinese Acupuncture &Moxibustion, 2011,31 (9): 837-839.

[10] Frey M, Giovanoli P, Gerber H, et al. Three-dimensional video analysis of facial movements: a new method to assess the quantity and quality of the smile[J]. Plastic and Reconstructive Surgery, 1999, 104(7): 2032-2039.

[11] Wachtman GS, Cohn JF, Vanswearingen JM, et al. Automated tracking of facial features in patients with facial neuromuscular dysfunction[J]. Plastic & Reconstructive Surgery, 2001, 107(5): 1124-1133.

[12] Dong J, Ma L, Li Q, et al. An approach for quantitative evaluation of the degree of facial paralysis based on salient point detection[C]// International Symposium on Intelligent Information Technology Application Workshops. Washington, DC, USA: IEEE Computer Society, 2008: 483-486.

[13] Nishida T, Chen YW, Matsushiro N, et al. An image based quantitative evaluation method for Facial Paralysis[C]// International Conference on Software Engineering and Data Mining. Chengdu, China: IEEE Press, 2010.

[14] 蔡志剛, 俞光巖, 王勇, 等. 計算機臨床量化面神經(jīng)功能評價系統(tǒng)的應用研究[J]. 中華口腔醫(yī)學雜志, 2001, 36(6):454-456.

Cai ZG, Yu GY, Wang Y, et al. Application research of computer clinical quantitative facial nerve function evaluation system[J]. Chinese Journal of Stomatology, 2001, 36(6): 454-456.

[15] Berlin N, Berssenbrügge P, Runte C, et al. Quantification of facial asymmetry by 2D analysis - A comparison of recent approaches[J]. Journal of Cranio-Maxillofacial Surgery, 2014, 42(3): 265-271.

[16] Karuppusamy S, Jerome J, Shankar N. Embedded implementation of facial landmarks detection using extended active shape model approach[C]// International Conference on Embedded Systems. IEEE Press, 2014: 265-270.

[17] Yoshihara H, Seo M, Ngo TH, et al. Automatic feature point detection using deep convolutional networks for quantitative evaluation of facial paralysis[C]// 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Datong, China: IEEE Press, 2016: 811-814.

[18]  McGrenary S, O'Reilly BF, Soraghan JJ. Objective grading of facial paralysis using artificial intelligence analysis of video data[C]//18th IEEE Symposium on Computer-Based Medical Systems. Dublin, Ireland: IEEE Press, 2005: 587-592.

[19] Tomat LR, Manktelow RT. Evaluation of a new measurement tool for facial paralysis reconstruction[J]. Plastic and Reconstructive Surgery, 2005, 115(3): 696-704.

[20] Liu L, Cheng G, Dong J, et al. Evaluation of facial paralysis degree based on regions[C]// Third International Conference on Knowledge Discovery and Data Mining. Phuket, Thailand: IEEE Computer Society, 2010: 514-517.

[21] Wang T, Zhang S, Dong J, et al. Automatic evaluation of the degree of facial nerve paralysis[J]. Multimedia Tools and Applications, 2016, 75(19):11893-11908.

[22] Codari M, Pucciarelli V, Stangoni F, et al. Facial thirds?based evaluation of facial asymmetry using stereophotogrammetric devices: Application to facial palsy subjects[J]. Journal of Cranio-Maxillofacial Surgery, 2017, 45(1):76-81.

[23] Meier-Gallati V, Scriba H, Fisch U. Objective scaling of facial nerve function based on area analysis (OSCAR)[J]. Otolaryngology - Head and Neck Surgery, 1998, 118(4): 545-550.

[24] Tanaka T, Nemoto J, Ohta M, et al. The evaluation of facial palsy by amount of feature point movements at facial expressions[C] //IEEE 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, CA, USA: IEEE Press, 2004, 2: 1463-1466.

[25] He S, Soraghan JJ, O’ Reilly BF. Biomedical image sequence analysis with application to automatic quantitative assessment of facial paralysis[J]. EURASIP Journal on Image and Video Processing, 2007, 2007: 081282.

[26] Hontanilla B, Aubá, C. Automatic three-dimensional quantitative analysis for evaluation of facial movement[J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2008, 61(1):18-30.

[27] Katsumi S, Esaki S, Hattori K, et al. Quantitative analysis of facial palsy using a three-dimensional facial motion measurement system[J]. Auris Nasus Larynx, 2015, 42(4):275-283.

[28] Hsu GS, Kang JH, Huang WF. Deep hierarchical network with line segment learning for quantitative analysis of facial palsy[J]. IEEE Access, 2019, 7: 4833-4842.

[29] Guo ZX, Shen M, Duan L, et al. Deep assessment process: Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network[C]// IEEE International Symposium on Biomedical Imaging. Melbourne, Australia: IEEE Press, 2017:135-138.

[30] Song A, Wu Z, Ding, X, et al. Neurologist standard classification of facial nerve paralysis with deep neural networks[J]. Future Internet, 2018, 10(11): 111.

[31] Sajid M, Shafique T, Baig MJA, et al. Automatic grading of palsy using asymmetrical facial features: a study complemented by new solutions[J]. Symmetry, 2018, 10(7): 242.

[32] Samsudin WSW, Sundaraj K. Image processing on facial paralysis for facial rehabilitation system: a review[C]// 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). Penang, Malaysia: IEEE Press, 2012:259-263.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]