[1] Farahvash MR, Yaghoobi A, Farahvash B, et al. The extratemporal facial nerve and its branches: analysis of 42 hemifacial dissections in fresh Persian (Iranian) cadavers[J]. Aesthetic Surgery Journal, 2013, 33(2):201-208. [2] 馮殿恩, 靳令經(jīng), 王鵬. 面癱與面肌痙攣[M].上海: 上海科學技術出版社, 2011. [3] 金炳旭, 唐純志. 針灸治療周圍性面癱研究進展[J]. 甘肅中醫(yī), 2005, 18(5):28-30. [4] Mishima K, Sugahara T. Review article: analysis methods for facial motion[J]. Japanese Dental Science Review, 2009, 45(1): 4-13. [5] Zhai MY, Feng GD, Gao ZQ. Facial grading system: physical and psychological impairments to be considered[J]. Journal of Otology, 2008, 3(2): 61-67. [6] Hashmat P. Determining normal and abnormal lip shapes during movement for use as a surgical outcome measure[D]. Cardiff, UK: Cardiff University, 2012. [7] 楊萬章, 吳芳, 張敏. 周圍性面神經(jīng)麻痹的中西醫(yī)結合評定及療效標準 (草案)[J]. 中西醫(yī)結合心腦血管病雜志, 2005, 3(9):786-787. [8] Li Y, Feng GD, Tian X, et al. Agreement between house-brackmann grading system and facial nerve grading system 2.0 in patients with facial nerve paralysis[J]. Chinese Journal of Otology, 2014, 12(3): 361. [9] 李雪,廖品東,羅敏,等. 評價周圍性面癱的“口眼喎僻度指數(shù)”研究[J]. 中國針灸,2011,31(9):837-839. Li X, Liao PD,Luo M, et al. Deviation index of eye and mouth on peripheral facial paralysis [J].Chinese Acupuncture &Moxibustion, 2011,31 (9): 837-839. [10] Frey M, Giovanoli P, Gerber H, et al. Three-dimensional video analysis of facial movements: a new method to assess the quantity and quality of the smile[J]. Plastic and Reconstructive Surgery, 1999, 104(7): 2032-2039. [11] Wachtman GS, Cohn JF, Vanswearingen JM, et al. Automated tracking of facial features in patients with facial neuromuscular dysfunction[J]. Plastic & Reconstructive Surgery, 2001, 107(5): 1124-1133. [12] Dong J, Ma L, Li Q, et al. An approach for quantitative evaluation of the degree of facial paralysis based on salient point detection[C]// International Symposium on Intelligent Information Technology Application Workshops. Washington, DC, USA: IEEE Computer Society, 2008: 483-486. [13] Nishida T, Chen YW, Matsushiro N, et al. An image based quantitative evaluation method for Facial Paralysis[C]// International Conference on Software Engineering and Data Mining. Chengdu, China: IEEE Press, 2010. [14] 蔡志剛, 俞光巖, 王勇, 等. 計算機臨床量化面神經(jīng)功能評價系統(tǒng)的應用研究[J]. 中華口腔醫(yī)學雜志, 2001, 36(6):454-456. Cai ZG, Yu GY, Wang Y, et al. Application research of computer clinical quantitative facial nerve function evaluation system[J]. Chinese Journal of Stomatology, 2001, 36(6): 454-456. [15] Berlin N, Berssenbrügge P, Runte C, et al. Quantification of facial asymmetry by 2D analysis - A comparison of recent approaches[J]. Journal of Cranio-Maxillofacial Surgery, 2014, 42(3): 265-271. [16] Karuppusamy S, Jerome J, Shankar N. Embedded implementation of facial landmarks detection using extended active shape model approach[C]// International Conference on Embedded Systems. IEEE Press, 2014: 265-270. [17] Yoshihara H, Seo M, Ngo TH, et al. Automatic feature point detection using deep convolutional networks for quantitative evaluation of facial paralysis[C]// 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Datong, China: IEEE Press, 2016: 811-814. [18] McGrenary S, O'Reilly BF, Soraghan JJ. Objective grading of facial paralysis using artificial intelligence analysis of video data[C]//18th IEEE Symposium on Computer-Based Medical Systems. Dublin, Ireland: IEEE Press, 2005: 587-592. [19] Tomat LR, Manktelow RT. Evaluation of a new measurement tool for facial paralysis reconstruction[J]. Plastic and Reconstructive Surgery, 2005, 115(3): 696-704. [20] Liu L, Cheng G, Dong J, et al. Evaluation of facial paralysis degree based on regions[C]// Third International Conference on Knowledge Discovery and Data Mining. Phuket, Thailand: IEEE Computer Society, 2010: 514-517. [21] Wang T, Zhang S, Dong J, et al. Automatic evaluation of the degree of facial nerve paralysis[J]. Multimedia Tools and Applications, 2016, 75(19):11893-11908. [22] Codari M, Pucciarelli V, Stangoni F, et al. Facial thirds?based evaluation of facial asymmetry using stereophotogrammetric devices: Application to facial palsy subjects[J]. Journal of Cranio-Maxillofacial Surgery, 2017, 45(1):76-81. [23] Meier-Gallati V, Scriba H, Fisch U. Objective scaling of facial nerve function based on area analysis (OSCAR)[J]. Otolaryngology - Head and Neck Surgery, 1998, 118(4): 545-550. [24] Tanaka T, Nemoto J, Ohta M, et al. The evaluation of facial palsy by amount of feature point movements at facial expressions[C] //IEEE 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, CA, USA: IEEE Press, 2004, 2: 1463-1466. [25] He S, Soraghan JJ, O’ Reilly BF. Biomedical image sequence analysis with application to automatic quantitative assessment of facial paralysis[J]. EURASIP Journal on Image and Video Processing, 2007, 2007: 081282. [26] Hontanilla B, Aubá, C. Automatic three-dimensional quantitative analysis for evaluation of facial movement[J]. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2008, 61(1):18-30. [27] Katsumi S, Esaki S, Hattori K, et al. Quantitative analysis of facial palsy using a three-dimensional facial motion measurement system[J]. Auris Nasus Larynx, 2015, 42(4):275-283. [28] Hsu GS, Kang JH, Huang WF. Deep hierarchical network with line segment learning for quantitative analysis of facial palsy[J]. IEEE Access, 2019, 7: 4833-4842. [29] Guo ZX, Shen M, Duan L, et al. Deep assessment process: Objective assessment process for unilateral peripheral facial paralysis via deep convolutional neural network[C]// IEEE International Symposium on Biomedical Imaging. Melbourne, Australia: IEEE Press, 2017:135-138. [30] Song A, Wu Z, Ding, X, et al. Neurologist standard classification of facial nerve paralysis with deep neural networks[J]. Future Internet, 2018, 10(11): 111. [31] Sajid M, Shafique T, Baig MJA, et al. Automatic grading of palsy using asymmetrical facial features: a study complemented by new solutions[J]. Symmetry, 2018, 10(7): 242. [32] Samsudin WSW, Sundaraj K. Image processing on facial paralysis for facial rehabilitation system: a review[C]// 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). Penang, Malaysia: IEEE Press, 2012:259-263.
|