51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
人工智能在醫(yī)學(xué)大數(shù)據(jù)標(biāo)準(zhǔn)化體系建設(shè)中的研究進(jìn)展

Research progress onartificial intelligence in the standardization system construction of medical big data

作者: 曾曉天  徐春園  張勇  董國(guó)昭  唐曉英 
單位:北京理工大學(xué)生命學(xué)院(北京;100081)
關(guān)鍵詞: 人工智能;  醫(yī)學(xué)大數(shù)據(jù);  標(biāo)準(zhǔn)體系建設(shè);  技術(shù)應(yīng)用 
分類號(hào):R318.04
出版年·卷·期(頁碼):2019·38·6(639-643)
摘要:

人工智能技術(shù)和大數(shù)據(jù)的飛速發(fā)展從各方面影響和改變著傳統(tǒng)醫(yī)學(xué)模式,為醫(yī)學(xué)大數(shù)據(jù)標(biāo)準(zhǔn)化體系建設(shè)中病歷結(jié)構(gòu)化、多源異構(gòu)數(shù)據(jù)標(biāo)準(zhǔn)化、個(gè)體化,以及人工智能輔助診斷和實(shí)現(xiàn)專家會(huì)診等功能提供了新的可能。本文旨在探索目前人工智能領(lǐng)域內(nèi)可能應(yīng)用于醫(yī)學(xué)大數(shù)據(jù)標(biāo)準(zhǔn)化建設(shè)的新技術(shù)和新思路,利用人工智能配合現(xiàn)有的互聯(lián)網(wǎng)技術(shù)手段,加速醫(yī)學(xué)大數(shù)據(jù)標(biāo)準(zhǔn)化體系建設(shè)的實(shí)現(xiàn)。人工智能作為醫(yī)學(xué)大數(shù)據(jù)標(biāo)準(zhǔn)化的應(yīng)用終端,對(duì)大數(shù)據(jù)標(biāo)準(zhǔn)化提出了要求,同時(shí),人工智能新技術(shù)的應(yīng)用在醫(yī)學(xué)大數(shù)據(jù)標(biāo)準(zhǔn)化體系建設(shè)上可以發(fā)揮更大的作用,有利于促進(jìn)區(qū)域間的合作和標(biāo)準(zhǔn)統(tǒng)一,盡早達(dá)到人工智能與醫(yī)學(xué)行業(yè)之間的深度融合,推動(dòng)人工智能與醫(yī)學(xué)大數(shù)據(jù)的臨床應(yīng)用。

The rapid developments of artificial intelligence technology and big data affect and change the traditional medical model from various aspects, providing a new possibility for the construction of medical big data standardization system, such as the standardization and personalization of structured multi-source heterogeneous data of medical records, as well as the realization of functions such as deep learning assisted standardization image and expert consultation. This paper aims to explore new technologies and new ideas that may be applied in the standardization construction of medical big data in the current field of artificial intelligence and accelerate the realization of the standardization system construction of medical big data by using artificial intelligence and internet technologies. As the application terminal of medical big data standardization, artificial intelligence puts forward requirements for big data standardization. Meanwhile, the new technology application of artificial intelligence can play a more important role in the standardization system construction. It is beneficial to promote cooperation between the region and the unified standards. It can meet the depth of the fusion between artificial intelligence and medical industry, and promote the artificial intelligence and big data in the clinical application. 

參考文獻(xiàn):

[1] 陳劍鋒. AI醫(yī)療將有效緩解人口老齡化加劇而帶來的醫(yī)療資源不足的難題[J].大數(shù)據(jù)時(shí)代,2018(9): 18-23.

Chen JF. AI health care will effectively alleviate the problem of insufficient medical resources due to the a ging of the population [J].The Period of Big Data ,2018(9): 18-23.

[2] 馬麗平, 李娜, 楊威, 等. 人口老齡化對(duì)我國(guó)醫(yī)療服務(wù)體系的挑戰(zhàn)[J].中國(guó)醫(yī)院,2019, 23(4): 1-3.

Ma LP, Li N,Yang W, et al. The challenge of aging on the healthcare delivery in China [J]Chinese Hospitals, 2019, 23(4): 1-3.

[3] Dolley S. Big data's role in precision public health [J]. Frontiers in Public Health, 2018, 6:68.

[4] EI aboudi N, Benhlima L. Big data management for healthcare systems: architecture, requirements, and implementation [J]. Advances in Bioinformatics, 2018, 2018: 4059018.

[5] 劉豐偉, 李漢軍, 張逸鶴,等. 人工智能在醫(yī)學(xué)影像診斷中的應(yīng)用[J].北京生物醫(yī)學(xué)工程,2019, 38(2): 206-211.

Liu FW, Li HJ, Zhang YH, et al.Application of artificial intelligence in medical imaging diagnosis[J].Beijing Biomedical Engeerning. 2019, 38(2): 206-211.

[6] 孔鳴, 何前鋒, 李蘭娟. 人工智能輔助診療發(fā)展現(xiàn)狀與戰(zhàn)略研究[J].中國(guó)工程科學(xué), 2018, 20(2): 86-91.

Kong M, He QF, Li LJ. AI assisted clinical diagnosis & treatment, and development strategy[J]Engineering Science, 2018, 20(2): 86-91.

[7] 修曉蕾, 吳思竹, 崔佳偉, 等. 醫(yī)學(xué)知識(shí)圖譜構(gòu)建研究進(jìn)展[J].中華醫(yī)學(xué)圖書情報(bào)雜志, 2018, 27(10): 33-39.

Xiu XL, Wu SZ, Cui JW, et al. Advances in studies on construction of medical knowledge graphs[J]. Chinese Journal of Medical Library and Information Science, 2018, 27(10): 33-39.

[8] dos Santos DP, Bae?ler B. Big data, artificial intelligence, and structured reporting [J]. European Radiology Experimental, 2018, 2: 42.

[9] 張琪. 人工智能在醫(yī)療行業(yè)創(chuàng)新應(yīng)用的商業(yè)模式研究[J].中國(guó)國(guó)際財(cái)經(jīng)(中英文), 2017(24):253-254.

Zhang Q. Research on business model of innovative application of artificial intelligence in medical field[J].China International Finance, 2017(24):253-254.

[10] Kessel KA, Combs SE. Review of developments in electronic, clinical data collection, and documentation systems over the last decade - Are we ready for big data in routine health care? [J]. Frontiers in Oncology, 2016, 6: 75.

[11] Lin C, Hsu CJ, Lou YS, et al. Artificial intelligence learning semantics via external resources for classifying diagnosis codes in discharge notes [J]. Journal of Medical Internet Research, 2017, 19(11): e380.

[12] Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities [J]. Journal of Pathology Informatics, 2018, 9: 38.

[13] 陳禮潮, 孫金海, 陳立富. 我國(guó)人口健康信息數(shù)據(jù)標(biāo)準(zhǔn)化進(jìn)展[J].職業(yè)與健康,2018, 34(16): 2287-2291.

Chen LC, Sun JH, Chen LF. Progress of standardization of population health information data in China [J]. Occupation and Health, 2018, 34(16): 2287-2291.

[14] 劉振峰,徐寧,陶長(zhǎng)俊.人工智能在醫(yī)療領(lǐng)域中的應(yīng)用及展望[J].網(wǎng)絡(luò)安全技術(shù)與應(yīng)用,2018(8): 98-99.

[15] Moscatelli M, Manconi A, Pessina M, et al. An infrastructure for precision medicine through analysis of big data [J]. BMC Bioinformatics, 2018, 19(Suppl 10): 351.

[16] Thorpe JH, Gray EA. Big data and ambulatory care: breaking down legal barriers to support effective use[J]. The Journal of Ambulatory Care Management, 2015, 38(1): 29-38.

[17] Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications [J]. Radiographics, 2016, 36(1): 176-191.

[18] Guetterman TC, Chang T, Dejonckheere M, et al. Augmenting qualitative text analysis with natural language processing: methodological study [J]. Journal of Medical Internet Research, 2018, 20(6): e231.

[19] Lee CH, Yoon HJ. Medical big data: promise and challenges[J]. Kidney Research and Clinical Practice, 2017, 36(1): 3-11.

[20] Névéol A, Zweigenbaum P. Making sense of big textual data for health care: findings from the section on clinical natural language processing [J]. Yearbook of Medical Informatics, 2017, 26(1): 228-234.

[21] 查曉陽. 醫(yī)療領(lǐng)域中人工智能技術(shù)的應(yīng)用分析[J]. 電腦知識(shí)與技術(shù), 2018, 14(6): 143-144.

[22] Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems[J]. Journal of Global Health, 2018, 8(2): 020303.

[23] 朱佳佳, 徐楊. 人工智能在醫(yī)療健康領(lǐng)域的應(yīng)用研究[J].電信網(wǎng)技術(shù), 2018(4): 21-24.

[24] 吳丹, 馬樂. 基于可穿戴設(shè)備的醫(yī)療健康數(shù)據(jù)生命周期管理與服務(wù)研究[J].信息資源管理學(xué)報(bào), 2018(4): 15-27.

Wu D, Ma L. Research on health care data life cycle management and service based on wearable devices[J]. Journal of Information Resources Management, 2018(4): 15-27.

[25] Wang Y, Sun L, Hou J. Hierarchical medical system based on big data and mobile internet: a new strategic choice in health care [J]. JMIR Medical Informatics, 2017, 5(3): e22.

[26] Fr?hlich H, Balling R, Beerenwinkel N, et al. From hype to reality: data science enabling personalized medicine [J]. BMC Medicine, 2018, 16(1): 150.

[27] Rush B, Stone DJ, Celi LA. From big data to artificial intelligence: harnessing data routinely collected in the process of care [J]. Critical Care Medicine, 2018, 46(2): 345-346.

[28] 胡守興. 人工智能+健康醫(yī)療的研究和應(yīng)用[J].軟件和集成電路,2019(4): 10-13.

[29] 王海星, 田雪晴, 游茂, 等. 人工智能在醫(yī)療領(lǐng)域應(yīng)用現(xiàn)狀、問題及建議[J].衛(wèi)生軟科學(xué), 2018, 32(5): 3-5,9.

Wang HX, Tian XQ, You M, et al. Application status, problems and suggestions of artificial intelligence in medical field[J]. Soft Science of Health, 2018, 32(5): 3-5,9.

[30] 周吉銀, 劉丹, 曾圣雅. 人工智能在醫(yī)療領(lǐng)域中應(yīng)用的挑戰(zhàn)與對(duì)策[J].中國(guó)醫(yī)學(xué)倫理學(xué), 2019, 32(3): 281-286.

Zhou JY,Liu D,Zeng SY. Challenges and countermeasures of application of artificial intelligence in medical field[J]. Chinese Medical Ethics, 2019, 32(3): 281-286. 

[31] 周騰,白璐,陳軼戈,等. 人工智能驅(qū)動(dòng)下的腦卒中高危人群早期篩查和預(yù)防工作模式研究[J].中國(guó)醫(yī)藥導(dǎo)報(bào),2019,16(11):165-168,封三.

Zhou T, Bai L, Chen YG, et al. Early screening and prevention work mode of high-risk stroke patients driven by artificial intelligence[J]. China Medical Herald, 2019,16(11):165-168, inside back cover.

[32] Gao F, Thiebes S, Sunyaev A. Rethinking the meaning of cloud computing for health care: a taxonomic perspective and future research directions [J]. Journal of Medical Internet Research, 2018, 20(7): e10041.

[33] Kichko K, Marschall P, Flessa S. Personalized medicine in the U.S. and Germany: awareness, acceptance, use and preconditions for the wide implementation into the medical standard [J]. Journal of Personalized Medicine, 2016, 6(2): 15.

[34] Luo J, Wu M, Gopukumar D, et al. Big data application in biomedical research and health care: a literature review [J]. Biomedical Informatics Insights, 2016, 8:1-10.



服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]