[1] 陳劍鋒. AI醫(yī)療將有效緩解人口老齡化加劇而帶來的醫(yī)療資源不足的難題[J].大數(shù)據(jù)時(shí)代,2018(9): 18-23. Chen JF. AI health care will effectively alleviate the problem of insufficient medical resources due to the a ging of the population [J].The Period of Big Data ,2018(9): 18-23. [2] 馬麗平, 李娜, 楊威, 等. 人口老齡化對(duì)我國(guó)醫(yī)療服務(wù)體系的挑戰(zhàn)[J].中國(guó)醫(yī)院,2019, 23(4): 1-3. Ma LP, Li N,Yang W, et al. The challenge of aging on the healthcare delivery in China [J]Chinese Hospitals, 2019, 23(4): 1-3. [3] Dolley S. Big data's role in precision public health [J]. Frontiers in Public Health, 2018, 6:68. [4] EI aboudi N, Benhlima L. Big data management for healthcare systems: architecture, requirements, and implementation [J]. Advances in Bioinformatics, 2018, 2018: 4059018. [5] 劉豐偉, 李漢軍, 張逸鶴,等. 人工智能在醫(yī)學(xué)影像診斷中的應(yīng)用[J].北京生物醫(yī)學(xué)工程,2019, 38(2): 206-211. Liu FW, Li HJ, Zhang YH, et al.Application of artificial intelligence in medical imaging diagnosis[J].Beijing Biomedical Engeerning. 2019, 38(2): 206-211. [6] 孔鳴, 何前鋒, 李蘭娟. 人工智能輔助診療發(fā)展現(xiàn)狀與戰(zhàn)略研究[J].中國(guó)工程科學(xué), 2018, 20(2): 86-91. Kong M, He QF, Li LJ. AI assisted clinical diagnosis & treatment, and development strategy[J]Engineering Science, 2018, 20(2): 86-91. [7] 修曉蕾, 吳思竹, 崔佳偉, 等. 醫(yī)學(xué)知識(shí)圖譜構(gòu)建研究進(jìn)展[J].中華醫(yī)學(xué)圖書情報(bào)雜志, 2018, 27(10): 33-39. Xiu XL, Wu SZ, Cui JW, et al. Advances in studies on construction of medical knowledge graphs[J]. Chinese Journal of Medical Library and Information Science, 2018, 27(10): 33-39. [8] dos Santos DP, Bae?ler B. Big data, artificial intelligence, and structured reporting [J]. European Radiology Experimental, 2018, 2: 42. [9] 張琪. 人工智能在醫(yī)療行業(yè)創(chuàng)新應(yīng)用的商業(yè)模式研究[J].中國(guó)國(guó)際財(cái)經(jīng)(中英文), 2017(24):253-254. Zhang Q. Research on business model of innovative application of artificial intelligence in medical field[J].China International Finance, 2017(24):253-254. [10] Kessel KA, Combs SE. Review of developments in electronic, clinical data collection, and documentation systems over the last decade - Are we ready for big data in routine health care? [J]. Frontiers in Oncology, 2016, 6: 75. [11] Lin C, Hsu CJ, Lou YS, et al. Artificial intelligence learning semantics via external resources for classifying diagnosis codes in discharge notes [J]. Journal of Medical Internet Research, 2017, 19(11): e380. [12] Tizhoosh HR, Pantanowitz L. Artificial intelligence and digital pathology: challenges and opportunities [J]. Journal of Pathology Informatics, 2018, 9: 38. [13] 陳禮潮, 孫金海, 陳立富. 我國(guó)人口健康信息數(shù)據(jù)標(biāo)準(zhǔn)化進(jìn)展[J].職業(yè)與健康,2018, 34(16): 2287-2291. Chen LC, Sun JH, Chen LF. Progress of standardization of population health information data in China [J]. Occupation and Health, 2018, 34(16): 2287-2291. [14] 劉振峰,徐寧,陶長(zhǎng)俊.人工智能在醫(yī)療領(lǐng)域中的應(yīng)用及展望[J].網(wǎng)絡(luò)安全技術(shù)與應(yīng)用,2018(8): 98-99. [15] Moscatelli M, Manconi A, Pessina M, et al. An infrastructure for precision medicine through analysis of big data [J]. BMC Bioinformatics, 2018, 19(Suppl 10): 351. [16] Thorpe JH, Gray EA. Big data and ambulatory care: breaking down legal barriers to support effective use[J]. The Journal of Ambulatory Care Management, 2015, 38(1): 29-38. [17] Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications [J]. Radiographics, 2016, 36(1): 176-191. [18] Guetterman TC, Chang T, Dejonckheere M, et al. Augmenting qualitative text analysis with natural language processing: methodological study [J]. Journal of Medical Internet Research, 2018, 20(6): e231. [19] Lee CH, Yoon HJ. Medical big data: promise and challenges[J]. Kidney Research and Clinical Practice, 2017, 36(1): 3-11. [20] Névéol A, Zweigenbaum P. Making sense of big textual data for health care: findings from the section on clinical natural language processing [J]. Yearbook of Medical Informatics, 2017, 26(1): 228-234. [21] 查曉陽. 醫(yī)療領(lǐng)域中人工智能技術(shù)的應(yīng)用分析[J]. 電腦知識(shí)與技術(shù), 2018, 14(6): 143-144. [22] Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems[J]. Journal of Global Health, 2018, 8(2): 020303. [23] 朱佳佳, 徐楊. 人工智能在醫(yī)療健康領(lǐng)域的應(yīng)用研究[J].電信網(wǎng)技術(shù), 2018(4): 21-24. [24] 吳丹, 馬樂. 基于可穿戴設(shè)備的醫(yī)療健康數(shù)據(jù)生命周期管理與服務(wù)研究[J].信息資源管理學(xué)報(bào), 2018(4): 15-27. Wu D, Ma L. Research on health care data life cycle management and service based on wearable devices[J]. Journal of Information Resources Management, 2018(4): 15-27. [25] Wang Y, Sun L, Hou J. Hierarchical medical system based on big data and mobile internet: a new strategic choice in health care [J]. JMIR Medical Informatics, 2017, 5(3): e22. [26] Fr?hlich H, Balling R, Beerenwinkel N, et al. From hype to reality: data science enabling personalized medicine [J]. BMC Medicine, 2018, 16(1): 150. [27] Rush B, Stone DJ, Celi LA. From big data to artificial intelligence: harnessing data routinely collected in the process of care [J]. Critical Care Medicine, 2018, 46(2): 345-346. [28] 胡守興. 人工智能+健康醫(yī)療的研究和應(yīng)用[J].軟件和集成電路,2019(4): 10-13. [29] 王海星, 田雪晴, 游茂, 等. 人工智能在醫(yī)療領(lǐng)域應(yīng)用現(xiàn)狀、問題及建議[J].衛(wèi)生軟科學(xué), 2018, 32(5): 3-5,9. Wang HX, Tian XQ, You M, et al. Application status, problems and suggestions of artificial intelligence in medical field[J]. Soft Science of Health, 2018, 32(5): 3-5,9. [30] 周吉銀, 劉丹, 曾圣雅. 人工智能在醫(yī)療領(lǐng)域中應(yīng)用的挑戰(zhàn)與對(duì)策[J].中國(guó)醫(yī)學(xué)倫理學(xué), 2019, 32(3): 281-286. Zhou JY,Liu D,Zeng SY. Challenges and countermeasures of application of artificial intelligence in medical field[J]. Chinese Medical Ethics, 2019, 32(3): 281-286. [31] 周騰,白璐,陳軼戈,等. 人工智能驅(qū)動(dòng)下的腦卒中高危人群早期篩查和預(yù)防工作模式研究[J].中國(guó)醫(yī)藥導(dǎo)報(bào),2019,16(11):165-168,封三. Zhou T, Bai L, Chen YG, et al. Early screening and prevention work mode of high-risk stroke patients driven by artificial intelligence[J]. China Medical Herald, 2019,16(11):165-168, inside back cover. [32] Gao F, Thiebes S, Sunyaev A. Rethinking the meaning of cloud computing for health care: a taxonomic perspective and future research directions [J]. Journal of Medical Internet Research, 2018, 20(7): e10041. [33] Kichko K, Marschall P, Flessa S. Personalized medicine in the U.S. and Germany: awareness, acceptance, use and preconditions for the wide implementation into the medical standard [J]. Journal of Personalized Medicine, 2016, 6(2): 15.
[34] Luo J, Wu M, Gopukumar D, et al. Big data application in biomedical research and health care: a literature review [J]. Biomedical Informatics Insights, 2016, 8:1-10.
|