51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
干細(xì)胞在喉軟骨修復(fù)中的作用及研究進(jìn)展

Function andresearch progress of stem cells in laryngeal cartilage repair

作者: 徐捷  沈志森  吳益棟  崔翔  裘世杰  葉棟 
單位:寧波大學(xué)醫(yī)學(xué)院(浙江寧波;315211); 寧波大學(xué)醫(yī)學(xué)院附屬李惠利醫(yī)院耳鼻咽喉頭頸外科(浙江寧波 315040)
關(guān)鍵詞: 喉軟骨;  干細(xì)胞;  軟骨修復(fù);  組織工程;  支架 
分類號:R318
出版年·卷·期(頁碼):2019·38·6(644-649)
摘要:

喉癌的發(fā)病率占頭頸部惡性腫瘤的第二位并有上升趨勢,手術(shù)后因喉組織缺損致喉呼吸、發(fā)音及吞咽等功能障礙,嚴(yán)重影響喉癌患者的生存率及生活質(zhì)量。將組織工程支架用于喉相關(guān)疾病的治療是較理想的方法之一,其中如何選擇合適的種子細(xì)胞將其賦予支架中是非常重要的環(huán)節(jié)。干細(xì)胞作為種子細(xì)胞用于軟骨修復(fù)已經(jīng)證實優(yōu)于分化的細(xì)胞如軟骨細(xì)胞等,本文從喉軟骨修復(fù)的國內(nèi)外研究現(xiàn)狀、干細(xì)胞的分類、干細(xì)胞修復(fù)軟骨組織的作用機(jī)制等方面進(jìn)行介紹,并分析了當(dāng)前干細(xì)胞的相關(guān)研究進(jìn)展對未來應(yīng)用于臨床的前景。

Laryngeal cancer is the second leading cause of head and neck malignant tumors and is on the rise. The survival rate and quality of life of patients are seriously affected after surgery. Tissue engineering scaffolds are one of the ideal methods for the treatment of laryngeal related diseases. It is the key point to select seed cells for tissue engineering scaffolds. Stem cells, as seed cells, have been proved to be superior to the differentiated cells such as chondrocytes in cartilage repair. In this paper, the research status of laryngeal cartilage repair at home and abroad, the classification of stem cells, and the mechanism of stem cells in cartilage tissue repair are introduced, and the related research progress of stem cells is analyzed, and the future prospects for clinical application are also discussed.

參考文獻(xiàn):

[1]Du L, Li H, Zhu C, et al. Incidence and mortality of laryngeal cancer in china, 2011[J]. Chinese Journal of Cancer Research, 2015, 27(1):52-58.

[2]Rifai M, Hassouna MS, Fattah A, et al. Experience with supracricoid laryngectomy variants[J]. Head & Neck, 2011, 33(8): 1177-1183.

[3]Leone CA, Capasso P, Russo G, et al. Supracricoid laryngectomies: oncological and functional results for 152 patients[J]. Acta Otorhinolaryngologica Italica, 2014, 34 (5): 317-326.

[4]To K, Qureishi A, Mortimore S, et al. The role of primary transoral laser microsurgery in laryngeal cancer: a retrospective study[J].Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery,2015,40(5):449-455.

[5]Basad E, Ishaque B, Bachmann G, et al. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study[J]. Knee Surgery, Sports Traumatology, Arthroscopy: official Journal of the Esska, 2010,18 (4) :519-527.

[6]Kang SW, Yoo SP, Kim BS, et al. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage[J]. Bio-medical Materials and Engineering, 2007,17(5):269-276.

[7]Du XF, Kwon SK, Song JJ, et al. Tracheal reconstruction by mesenchymal stem cells with small intestine submucosa in rabbits[J]. International Journal of Pediatric Otorhinolaryngology, 2012,76(3):345-351.

[8]Tsumaki N, Okada M, Yamashita A, et al. iPS cell technologies and cartilage regeneration[J]. Bone, 2015,70: 48-54.

[9]Lee JW, Fang X, Krasnodembskaya A, et al. Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors[J]. Stem Cells, 2011,29(6):913–919.

[10]Koga H, Engebretsen L, Brinchmann JE, et al. Mesenchymal stem cell-based therapy for cartilage repair: a review[J]. Knee Surgery, Sports Traumatology, Arthroscopy, 2009,17 (11) :1289-1297.

[11]Acharya C, Adesida A, Zajac P, et al. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation[J]. Journal of Cellular Physiology, 2012, 227 (1): 88-97.

[12]Steck E, Bertram H, Abel R, et al. Induction of intervertebral disc-like cells from adult mesenchymal stem cells[J]. Stem Cells, 2005, 23(3):403-411.

[13]Yao H, Xue J, Wang Q, et al. Glucosamine-modified polyethylene glycol hydrogel-mediated chondrogenic differentiation of human mesenchymal stem cells[J]. Materials Science and Engineering: C,2017,79:661-670.

[14]An HS, Thonar EJ, Masuda K. Biological repair of intervertebral disc[J]. Spine, 2003, 28(15 Suppl):S86-S92.

[15]Dani?ovi? L, Bohá? M, Zamborsky R, et al. Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering[J]. General Physiology and Biophysics, 2016, 35 (2): 207-214.

[16]Guzzo RM, Scanlon V, Sanjay A, et al. Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential[J]. Stem Cell Reviews, 2014, 10 (6): 820-829.

[17]Guzzo RM, Gibson J, Xu RH, et al. Efficient differentiation of human iPSC‐derived mesenchymal stem cells to chondroprogenitor cells[J]. Journal of Cellular Biochemistry, 2013, 114(2): 480-490.

[18]Nejadnik H, Diecke S, Lenkov OD, et al. Improved approach for chondrogenic differentiation of human induced pluripotent stem cells[J]. Stem Cell Reviews and Reports, 2015,11(2):242-253.

[19] Ko JY, Kim KI, Park S, et al. In vitro chondrogenesis and in vivo repair of osteochondral defect with human induced pluripotent stem cells[J]. Biomaterials, 2014,35(11):3571-3581.

[20] Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells[J]. Nature, 448(7151): 313-317.

[21] Fusaki N, Ban H, Nishiyama A, et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome[J]. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences,2009, 85(8):348-362.

[22]Leten C, Roobrouck VD, Struys T, et al. Controlling and monitoring stem cell safety in vivo in an experimental rodent model[J]. Stem Cells, 2014, 32(11):2833-2844.

[23]Kang N, Liu X, Guan Y, et al. Effects of co-culturing bmscs and auricular chondrocytes on the elastic modulus and hypertrophy of tissue engineered cartilage[J]. Biomaterials, 2012, 33(18): 4535-4544.

[24]Spees JL, Lee RH, Gregory CA, et al. Mechanisms of mesenchymal stem/stromal cell function[J]. Stem Cell Research & Therapy, 2016, 7(1): 125-138.

[25]Rani S, Ryan AE, Griffin MD, et al. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications[J]. Molecular Therapy the Journal of the American Society of Gene Therapy, 2015, 23(5):812-823.

[26]Zhang S, Chu WC, Lai RC, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration[J]. Osteoarthritis & Cartilage, 2016, 24(12): 2135-2140.

[27]Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model[J]. Theranostics, 2017, 7(1):180-195.

[28]Arasu UT, K?rn? R, H?rk?nen K, et al. Human mesenchymalstem cells secrete hyaluronan-coated extracellular vesicle[J]. Matrix Biology, 2017, 64: 54-68.

[29]Medvedev SP , Grigor’Eva EV, Shevchenko AI, et al. Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage[J]. Stem Cells and Development, 2011, 20(6):1099-1112.

[30]Hwang NS, Varghese S, Zhang Z, et al. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine- glycine- aspartate- modified hydrogels [J]. Tissue Engineering,2006,12(9): 2695- 2706.

[31]Wakitani S, Okabe T, Horibe S, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months[J]. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5(2): 146-150.

[32]de Windt TS, Vonk LA, Slaper-Cortenbach IA, et al. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons[J]. Stem Cells, 2017, 35(1): 256-264.

[33]Vinardell T, Sheehy EJ, Buckley CT, et al. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources[J].Tissue Engineering Part A,2012,18(11-12):1161-1170.

[34]Pagnotto MR, Wang Z, Karpie JC, et al. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair[J]. Gene Therapy, 2007, 14(10): 804-813.

[35]De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J].Arthritis and Rheumatism ,2001,44(8):1928-1942.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]