[1] 龍村, 李欣,于坤. 現(xiàn)代體外循環(huán)學(xué)[M]. 北京: 人民衛(wèi)生出版社, 2017. Long C, Li X, Yu K. Contemporary extracorporeal circulation[M]. Beijing: People's Medical Publishing House, 2017. [2] 云忠,向闖,石芬. 血泵溶血的研究進(jìn)展[J].生物醫(yī)學(xué)工程研究,2011, 30(3): 194-198. Yun Z, Xiang C, Shi F. Development of research on hemolysis of blood pump[J]. Journal of Biomedical Engineering Research, 2011, 30(3): 194-198. [3] 宋小軍, 劉志麗, 葉煒. AngioJet治療下腔靜脈亞急性血栓形成三例體會[J]. 中華血管外科雜志, 2017, 2(3): 177-179. [4] 韓勝斌, 陳明清, 董堅(jiān). 下肢深靜脈血栓形成在不同自然病程中的血流動力學(xué)觀察:附203例報(bào)告[J]. 中國普通外科雜志, 2012, 21(4): 451-455. Han SB, Chen MQ, Dong J. Hemodynamic observation of lower extremity deep venous thrombosis in different natural stages: a report of 203 cases[J]. Chinese Journal of General Surgery, 2012, 21(4): 451-455. [5] 王芳群, 封志剛, 茹偉民, 等. 無源磁浮葉輪血泵的溶血實(shí)驗(yàn)及其指標(biāo)的測定[J]. 江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版), 2002, 23(2): 63-65. Wang FQ, Feng ZG, Ru WM, et al. The evaluation of hemolysis index of the permanent maglev impeller pump[J]. Journal of JianSu University (Natural Science Edition), 2002, 23(2): 63-65. [6] 張吉亮, 吳昌哲, 霍小林. 血容量監(jiān)測的方法及其在血液透析中的應(yīng)用[J]. 北京生物醫(yī)學(xué)工程, 2015, 34(1):96-101. Zhang JL, Wu CZ, Hu XL. The methods of blood volume monitoring and its application in hemodialysis[J]. Beijing Biomedical Engineering, 2015, 34(1): 96-101. [7] Eistrup SS, Takano T, Mseda T, et al. CFD studies of C1E3 Gyro centrifugal blood pump[J]. ASAIO Journal, 2000, 46(2): 232. [8] Wang FQ, Li L, Feng ZG,et al. Prediction of shear stress-related hemolysis in centrifugal blood pumps by computation fluid dynamics[J]. Artificial Organs, 2005, 15(10): 951-955. [9] 李衛(wèi)東, 姚奇, 杜建軍, 等. 基于CFD的液懸浮人工心臟泵葉輪入口優(yōu)化分析[J]. 北京生物醫(yī)學(xué)工程, 2017, 36(1): 21-28,54. Li WD, Yao Q, Du JJ, et al. Optimization analysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD[J]. Beijing Biomedical Engineering, 2017, 36(1):21-28, 54. [10] Fraser KH, Taskin ME, Zhang T, et al. Comparison of shear stress,residence time and lagrangian estimates of hemolysis in different ventricular assist device[J]. IFMBE Proceeding, 2010,32(5):548-551. [11] 云忠,譚建平,徐先懂. 紅細(xì)胞撞擊損傷機(jī)理研究及仿真分析[J]. 生物醫(yī)學(xué)工程研究, 2006, 25(1): 20-23,27. Yun Z, Tan JP, Xu XD. Study and simulation analysis on the hurt principle of the RBC impact[J]. Journal of Biomedical Engineering Research, 2006, 25(1): 20-23,27. [12] Shahraki ZH, Oscuii HN. Numerical investigation of three patterns of motion in an electromagnetic pulsatile VAD[J].ASAIO Journal ,2014, 60(3) :304 -310. [13] Kameneva MV, Burgreen GW, Kono K, et al. Effects of turbulents-tresses upon mechanical hemolysis: experimental and computational analysis[J]. ASAIO Journal, 2004, 50(5): 418-423. [14] Shu F, Parks R, Maholtz J, et al. Multimodal flow visualization and optimization of pneumatic blood pump for sorbent hemodialysis system[J]. Artificial Organs, 2009, 33(4): 334-345. [15] Kosaka R, Yada T, Nishida M, et al. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis[J]. Artificial Organs, 2013, 37(9): 778–785. [16] Navitsky MA, Deutsch S, Manning KB. A thrombus susceptibility comparison of two pulsatile Penn State 50 cc left ventricular assist device designs[J]. Annals of Biomedical Engineering, 2013, 41(1): 4-16. [17] Topper SR, Navitsky MA, Medvitz RB, et al. The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs[J]. Cardiovascular Engineering and Technology, 2014, 5(1): 54-69. [18] Asakura Y, Sapkota A, Maruyama O, et al. Relative permittivity measurement during the thrombus formation process using the dielectric relaxation method for various hematocrit values[J]. Artificial Organs, 2015, 18(4): 346–353. [19] 王倩, 許歡, 周廣敏, 等. 生物阻抗測量技術(shù)及其臨床應(yīng)用研究進(jìn)展[J]. 北京生物醫(yī)學(xué)工程, 2014, 33(2): 185-190. Wang Q, Xu H, Zhou GM, et al. Research progress on measurement technology and clinical application of bioimpedance[J]. Beijing Biomedical Engineering, 2014, 33(2): 185-190. [20] 汪洪彬, 周恒艷, 張春健, 等. 基于電阻抗技術(shù)的多通道呼吸監(jiān)測系統(tǒng)[J]. 北京生物醫(yī)學(xué)工程, 2013, 32(6): 601-605. Wang HB, Zhou HY, Zhang CJ, et al. A multiple-channel respiratory monitor system based on electrical impedance technology[J]. Beijing Biomedical Engineering, 2013, 32(6): 601-605. [21] Sapkota A, Fuse T, Seki M, et al. Application of electrical resistance tomography for thrombus visualization in blood[J]. Flow Measurement and Instrumentation, 2015, 46(B): 334–340. [22] Huu DN, Kikuchi D, Maruyama O, et al. Cole-Cole analysis of thrombus formation in an extracorporeal bloodflow circulation using electrical measurement[J]. Flow Measurement and Instrumentation, 2017, 53(A): 172-179. [23] Oshima S, Sankai Y. Improvement of the accuracy in the optical hematocrit measurement by optimizing mean optical path length[J]. Artificial Organs, 2009, 33(9):749–756. [24] Sakota D, Murashige T, Kosaka R, et al. Feasibility of the optical imaging of thrombus formation in a rotary blood pump by near-infrared light[J]. Artificial Organs, 2014, 38(9): 733–740. [25] Park S, Sanders D, Smith B, et al. Total artificial heart in the pediatric patient with biventricular heart failure[J]. Perfusion, 2014, 29(1): 82-88. [26] Fujiwara T, Sakota D, Ohuchi K, et al. Optical dynamic analysis of thrombus inside a centrifugal blood pump during extracorporeal mechanical circulatory support in a porcine model[J]. Artificial Organs, 2017, 41(10): 893–903. [27] Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(8): 1264-1267. [28] 周竹, 方益明, 尹建新, 等. 高光譜成像技術(shù)及其在木材無損檢測中的研究進(jìn)展[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2015,32( 3) : 458 -466. Zhou Z, Fang YM, Yin JX, et al. Review of nondestructive detection of wood and wood products based on hyperspectral imaging technology[J]. Journal of Zhejiang A&F University, 2015,32( 3) : 458-466. [29] Burud I,Gobakken LR, Fl A, et al.Hyperspectral imaging of blue stain fungi on coated and uncoated wooden surfaces[J].International Biodeterioration & Biodegradation, 2014, 88 : 37-43. [30] Sakota D, Murashige T, Kosaka R, et al. Real-time observation of thrombus growth process in an impeller of a hydrodynamically levitated centrifugal blood pump by near-infrared hyperspectral imaging[J]. Artificial Organs, 2015, 39(8): 714–719. Sakota D, Fujiwara T, Ouchi K, et al. Development of an optical detector of thrombus formation on the pivot bearing of a rotary blood pump[J]. Artificial Organs, 2016, 40(9): 834–841.
|