51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
血細(xì)胞損傷檢測研究進(jìn)展

Research progress on detection of blood celldamage

作者: 王陶濤  谷雪蓮 
單位:上海理工大學(xué)醫(yī)療器械與食品學(xué)院(上海 200093)
關(guān)鍵詞: 血液檢測;  體外循環(huán);  優(yōu)化; 
分類號:R318; R552
出版年·卷·期(頁碼):2019·38·6(650-654)
摘要:

血細(xì)胞的損傷程度對于體外循環(huán)心臟直視手術(shù)的成功至關(guān)重要,因此血細(xì)胞損傷檢測是血泵優(yōu)化及術(shù)中監(jiān)測必不可少的環(huán)節(jié)。目前,血細(xì)胞損傷檢測技術(shù)主要分為離線檢測和在線實(shí)時(shí)檢測兩大類。這兩種檢測技術(shù)各有優(yōu)缺點(diǎn),其中離線檢測方法能準(zhǔn)確測量數(shù)據(jù), 而在線實(shí)時(shí)檢測方法則是利用血液的介電性質(zhì)和光學(xué)性質(zhì)實(shí)時(shí)測量獲取的人體數(shù)據(jù)。本文對血細(xì)胞損傷檢測技術(shù)的研究現(xiàn)狀進(jìn)行了闡述,在分析體外循環(huán)裝置引起血細(xì)胞損傷原因的基礎(chǔ)上,介紹了血細(xì)胞損傷檢測方法,并結(jié)合基于血液的介電性質(zhì)和光學(xué)性質(zhì)研發(fā)的檢測裝置,分析了血細(xì)胞損傷檢測技術(shù)的適用范圍及研究方向。

The degree of blood cell damage is important for the success of open heart surgery with cardiopulmonary bypass. Therefore, the detection of blood cell damage is an indispensable link for blood pump optimization and intraoperative monitoring. At present, detection technology of blood cell damage is mainly divided into two categories: off-line detection and on-line real-time detection. These two detection techniques have their own advantages and disadvantages. The off-line detection method can accurately measure the data, and the online real-time detection method utilizes the dielectric properties and optical properties of blood to measure the data of the human body in real time. In this paper, the research status of detection technology of blood cell damage is described. Based on the analysis of the reason of blood cell damage caused by cardiopulmonary bypass device, the detection method of blood cell damage is introduced. Combined with the detection device developed based on the dielectric and optical properties of blood, the application scope and research direction of detection of blood cell damage are analyzed.

參考文獻(xiàn):

[1] 龍村, 李欣,于坤. 現(xiàn)代體外循環(huán)學(xué)[M]. 北京: 人民衛(wèi)生出版社, 2017.

Long C, Li X, Yu K. Contemporary       extracorporeal circulation[M].      Beijing: People's Medical Publishing House, 2017.

[2] 云忠,向闖,石芬. 血泵溶血的研究進(jìn)展[J].生物醫(yī)學(xué)工程研究,2011, 30(3): 194-198.

Yun Z, Xiang C, Shi F. Development of research on hemolysis of blood pump[J]. Journal of Biomedical Engineering Research, 2011, 30(3): 194-198.

[3] 宋小軍, 劉志麗, 葉煒. AngioJet治療下腔靜脈亞急性血栓形成三例體會[J]. 中華血管外科雜志, 2017, 2(3): 177-179.

[4] 韓勝斌, 陳明清, 董堅(jiān). 下肢深靜脈血栓形成在不同自然病程中的血流動力學(xué)觀察:附203例報(bào)告[J]. 中國普通外科雜志, 2012, 21(4): 451-455.

Han SB, Chen MQ, Dong J. Hemodynamic observation of lower extremity deep venous thrombosis in different natural stages: a report of 203 cases[J]. Chinese Journal of General Surgery, 2012, 21(4): 451-455.

[5] 王芳群, 封志剛, 茹偉民, 等. 無源磁浮葉輪血泵的溶血實(shí)驗(yàn)及其指標(biāo)的測定[J]. 江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版), 2002, 23(2): 63-65.

Wang FQ, Feng ZG, Ru WM, et al. The evaluation of hemolysis index of the permanent maglev impeller pump[J]. Journal of JianSu University (Natural Science Edition), 2002, 23(2): 63-65.

[6] 張吉亮, 吳昌哲, 霍小林. 血容量監(jiān)測的方法及其在血液透析中的應(yīng)用[J]. 北京生物醫(yī)學(xué)工程, 2015, 34(1):96-101.

Zhang JL, Wu CZ, Hu XL. The methods of blood volume monitoring and its application in hemodialysis[J]. Beijing Biomedical Engineering, 2015, 34(1): 96-101.

[7] Eistrup SS, Takano T, Mseda T, et al. CFD studies of C1E3 Gyro centrifugal blood pump[J]. ASAIO Journal, 2000, 46(2): 232.

[8] Wang FQ, Li L, Feng ZG,et al. Prediction of shear stress-related hemolysis in centrifugal blood pumps by computation fluid dynamics[J]. Artificial Organs, 2005, 15(10): 951-955.

[9] 李衛(wèi)東, 姚奇, 杜建軍, 等. 基于CFD的液懸浮人工心臟泵葉輪入口優(yōu)化分析[J]. 北京生物醫(yī)學(xué)工程, 2017, 36(1): 21-28,54.

Li WD, Yao Q, Du JJ, et al. Optimization analysis for impeller inlet of artificial heart pump with hydraulic suspension based on CFD[J]. Beijing Biomedical Engineering, 2017, 36(1):21-28, 54.

[10] Fraser KH, Taskin ME, Zhang T, et al. Comparison of shear stress,residence time and lagrangian estimates of hemolysis in different ventricular assist device[J]. IFMBE Proceeding, 2010,32(5):548-551.

[11] 云忠,譚建平,徐先懂. 紅細(xì)胞撞擊損傷機(jī)理研究及仿真分析[J]. 生物醫(yī)學(xué)工程研究, 2006, 25(1): 20-23,27.

Yun Z, Tan JP, Xu XD. Study and simulation analysis on the hurt principle of the RBC impact[J]. Journal of Biomedical Engineering Research, 2006, 25(1): 20-23,27.

[12] Shahraki ZH, Oscuii HN. Numerical investigation of three patterns of motion in an electromagnetic pulsatile VAD[J].ASAIO Journal ,2014, 60(3) :304 -310.

[13] Kameneva MV, Burgreen GW, Kono K, et al. Effects of turbulents-tresses upon mechanical hemolysis: experimental and computational analysis[J]. ASAIO Journal, 2004, 50(5): 418-423.

[14] Shu F, Parks R, Maholtz J, et al. Multimodal flow visualization and optimization of pneumatic blood pump for sorbent hemodialysis system[J]. Artificial Organs, 2009, 33(4): 334-345.

[15] Kosaka R, Yada T, Nishida M, et al. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis[J]. Artificial Organs, 2013, 37(9): 778–785.

[16] Navitsky MA, Deutsch S, Manning KB. A thrombus susceptibility comparison of two pulsatile Penn State 50 cc left ventricular assist device designs[J]. Annals of Biomedical Engineering, 2013, 41(1): 4-16.

[17] Topper SR, Navitsky MA, Medvitz RB, et al. The use of fluid mechanics to predict regions of microscopic thrombus formation in pulsatile VADs[J]. Cardiovascular Engineering and Technology, 2014, 5(1): 54-69.

[18] Asakura Y, Sapkota A, Maruyama O, et al. Relative permittivity measurement during the thrombus formation process using the dielectric relaxation method for various hematocrit values[J]. Artificial Organs, 2015, 18(4): 346–353.

[19] 王倩, 許歡, 周廣敏, 等. 生物阻抗測量技術(shù)及其臨床應(yīng)用研究進(jìn)展[J]. 北京生物醫(yī)學(xué)工程, 2014, 33(2): 185-190.

Wang Q, Xu H, Zhou GM, et al. Research progress on measurement technology and clinical application of bioimpedance[J]. Beijing Biomedical Engineering, 2014, 33(2): 185-190.

[20] 汪洪彬, 周恒艷, 張春健, 等. 基于電阻抗技術(shù)的多通道呼吸監(jiān)測系統(tǒng)[J]. 北京生物醫(yī)學(xué)工程, 2013, 32(6): 601-605.

Wang HB, Zhou HY, Zhang CJ, et al. A multiple-channel respiratory monitor system based on electrical impedance technology[J]. Beijing Biomedical Engineering, 2013, 32(6): 601-605.

[21] Sapkota A, Fuse T, Seki M, et al. Application of electrical resistance tomography for thrombus visualization in blood[J]. Flow Measurement and Instrumentation, 2015, 46(B): 334–340.

[22] Huu DN, Kikuchi D, Maruyama O, et al. Cole-Cole analysis of thrombus formation in an extracorporeal bloodflow circulation using electrical measurement[J]. Flow Measurement and Instrumentation, 2017, 53(A): 172-179.

[23] Oshima S, Sankai Y. Improvement of the accuracy in the optical hematocrit measurement by optimizing mean optical path length[J]. Artificial Organs, 2009, 33(9):749–756.

[24] Sakota D, Murashige T, Kosaka R, et al. Feasibility of the optical imaging of thrombus formation in a rotary blood pump by near-infrared light[J]. Artificial Organs, 2014, 38(9): 733–740.

[25] Park S, Sanders D, Smith B, et al. Total artificial heart in the pediatric patient with biventricular heart failure[J]. Perfusion, 2014, 29(1): 82-88.

[26] Fujiwara T, Sakota D, Ohuchi K, et al. Optical dynamic analysis of thrombus inside a centrifugal blood pump during extracorporeal mechanical circulatory support in a porcine model[J]. Artificial Organs, 2017, 41(10): 893–903.

[27] Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(8): 1264-1267.

[28] 周竹, 方益明, 尹建新, 等. 高光譜成像技術(shù)及其在木材無損檢測中的研究進(jìn)展[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào),2015,32( 3) : 458 -466.

Zhou Z, Fang YM, Yin JX, et al. Review of nondestructive detection of wood and wood products based on hyperspectral imaging technology[J]. Journal of Zhejiang A&F University, 2015,32( 3) : 458-466.

[29] Burud I,Gobakken LR, Fl A, et al.Hyperspectral imaging of blue stain fungi on coated and uncoated wooden surfaces[J].International Biodeterioration & Biodegradation,  2014, 88 : 37-43.

[30] Sakota D, Murashige T, Kosaka R, et al. Real-time observation of thrombus growth process in an impeller of a hydrodynamically levitated centrifugal blood pump by near-infrared hyperspectral imaging[J]. Artificial Organs, 2015, 39(8): 714–719.

Sakota D, Fujiwara T, Ouchi K, et al. Development of an optical detector of thrombus formation on the pivot bearing of a rotary blood pump[J]. Artificial Organs, 2016, 40(9): 834–841.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]