51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于AdaBoost級聯(lián)框架的舌色分類

Tongue color classification based on AdaBoost cascade framework

作者: 王奕然  張新峰 
單位:北京工業(yè)大學信息學部(北京 100124)
關鍵詞: AdaBoost算法;級聯(lián)框架;圖像分類;多分類算法 
分類號:R318
出版年·卷·期(頁碼):2020·39·1(8-14)
摘要:

目的 基于圖像處理的舌質(zhì)顏色分析是中醫(yī)舌診現(xiàn)代化的重要內(nèi)容,提高舌色的正確識別率是其中的關鍵問題。本文使用集成學習的分類方法來探討舌色分類問題,以達到客觀,準確地識別中醫(yī)舌色的目的。方法 首先通過AdaBoost算法對舌圖像進行初步分類,再將該算法與級聯(lián)框架進行結(jié)合,然后通過“一對其余”的方法將AdaBoost從二分類擴展到多類來完成舌質(zhì)顏色的分析。最后通過實驗進行了驗證,并與其他方法所得出的結(jié)果進行對比。結(jié)果 針對各類舌質(zhì)顏色分類問題,使用隨機森林與傳統(tǒng)的AdaBoost分類器進行分類的正確率分別在78.0%-90.2%與89.4%-95.5%區(qū)間,而基于AdaBoost級聯(lián)框架的分類器的各類舌質(zhì)分類正確率在93.0%-98.7%之間。結(jié)論 基于AdaBoost級聯(lián)框架的舌質(zhì)顏色分類方法與其他經(jīng)典方法相比,具有較高的正確分類率,為基于圖像處理的中醫(yī)舌診輔助診斷奠定了一定的基礎。

Objective The color analysis of tongue based on image processing is an important part of the automatic analysis of tongue images in Chinese medicine. It is the key to improve the correct recognition rate of tongue color. This paper uses the classification method of integrated learning to explore the problem of tongue color classification [no, nuclear, and corresponding English] to achieve objective and accurate identification of TCM tongue color.Methods Firstly, the tongue image is preliminarily classified by AdaBoost algorithm, and then the algorithm is combined with the cascade framework. AdaBoost can be extended from two categories to multiple classes by a "one pair of rest" approach. In this way, the analysis of the color of the tongue can be achieved.Finally, the experiment is carried out and the results obtained by other methods were compared. ResultsFor various tongue color classification problems, the accuracy of classification using random forest and traditional AdaBoost classifiers is in the range of 78.0% -90.2% and 89.4% -95.5%, respectively, and the types of classifiers based on the AdaBoost cascade framework The accuracy of tongue classification is between 93.0% -98.7%.Conclusions Compared with other classical methods, the tongue color classification method based on AdaBoost cascading framework has a higher correct classification rate, which lays a foundation for the diagnosis of TCM tongue diagnosis based on image processing.

參考文獻:

[1]李經(jīng)緯.中醫(yī)大辭典[M].2版.北京:人民衛(wèi)生出版社,2005.

[2]楊新宇,梁嶸,王召平,等. 基于色度學的舌色分類研究現(xiàn)狀與分析[J]. 北京中醫(yī)藥大學學報,2012,35(8):539-542+577.

[3]沈蘭蓀. 用于舌診客觀化的圖像分析技術[C]//中國中西醫(yī)結(jié)合學會.第二次世界中西醫(yī)結(jié)合大會論文摘要集.北京:中國中西醫(yī)結(jié)合學會,2002:1.

Shen LX. Image analysis technology for objectification of tongue diagnosis[C]// Chinese Integrative Medicine Association. Second World Congress of Integrated Traditional Chinese and Western Medicine Abstracts.Beijing: China Association of Integrative Medicine, 2002 :1.

[4]黃勃. 舌數(shù)字圖像顏色計算機分析與分類[D].長沙:湖南中醫(yī)藥大學,2013.

  Huang B. Computerized tongue color analysis and classification[D].Changsha:Hunan University of Chinese Medcine,2013.

[5]樊艷,梁嶸,王召平,等.數(shù)字舌圖的色彩校正方法研究[J].世界科學技術,2005(4):34-36,85.

 Fan Y, Liang W, Wang ZP, et al. Research on color correction method of digital tongue map[J]. World Science and Technology, 2005(4): 34-36,85.

[6]李博聰,黃慶梅,陳松鶴,等.基于CIELAB空間的中醫(yī)舌色分析方法[J].世界科學技術-中醫(yī)藥現(xiàn)代化,2007(3):28-32,54.

 Li BC, Huang QM, Chen SH, et al. TCM color analysis method based on CIELAB space[J]. World Science and Technology-Modernization of Traditional Chinese Medicine, 2007(3): 28-32,54.

[7]李敏,徐學軍.基于數(shù)字化技術對糖尿病兩虛證舌色的研究[J].電子制作,2016(11):80-81,83.

[8]張錚 ,徐超,任淑霞,等.數(shù)字圖像處理與機器視覺:Visual C++與Matlab實現(xiàn)[M].北京:人民郵電出版社,2015.

 [9]Viola  P, Jones  M.  Rapid  object  detection  using  a  boosted  cascade  of  simple  features[C]// Proc  of IEEE  Conference  Computer  Vision  and  Pattern  Recognition.Cambridge:IEEE  Computer Society,2001:905-910.

[10]Zhou ZH. Large margin distribution learning .artificial neural networks in pattern recognition[M]. Berlin:Springer International Publishing, 2014:1-11.

[11]陳偉民,張凌,宋冬梅,等.基于 AdaBoost改進隨機森林的高光譜圖像地物分類方法研究[J].遙感技術與應用,2018,33(4):612-620.

Chen WM,Zhang L,Song DM,et al.Classification method based on AdaBoost improved random frrest[J].Remote Sensing Technology and Application,2018,33(4):612-620.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]