51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于肌肉機(jī)械功的異常步態(tài)分析

Abnormal gait analysis based on muscle mechanical work

作者: 黃美蘭  熊保平  史武翔  陳婷婷  杜民 
單位:1福州大學(xué)物理與信息工程學(xué)院(福州 350116) 2福州大學(xué)福建省醫(yī)療器械和醫(yī)藥技術(shù)重點(diǎn)實(shí)驗(yàn)室(福州 350116)
關(guān)鍵詞: 肌肉機(jī)械功;  量化分析;  肌肉協(xié)同;  神經(jīng)肌肉骨骼模型;  肌電;  偏癱 
分類(lèi)號(hào):R318.04
出版年·卷·期(頁(yè)碼):2020·39·1(21-28)
摘要:

目的 通過(guò)量化背屈肌和跖屈肌之間的協(xié)同作用分析不同行走速度下偏癱受試者踝關(guān)節(jié)角度的異常,以深層次地分析患者的運(yùn)動(dòng)功能。方法 將從肌電(electromyograph,EMG)驅(qū)動(dòng)的人體肌肉骨骼模型中獲得的肌力、力臂和關(guān)節(jié)角度參數(shù)進(jìn)行預(yù)處理,利用肌力和力臂差計(jì)算的患側(cè)跖屈肌群和背屈肌群做功情況來(lái)解釋由踝關(guān)節(jié)角度曲線(xiàn)反映出的步態(tài)異常。結(jié)果 跖屈肌群(主要是比目魚(yú)肌和腓腸肌)過(guò)度活躍做正功,保持高強(qiáng)度向心收縮,背屈肌群(主要是脛骨前肌)無(wú)力幾乎不做功導(dǎo)致肌肉協(xié)同失衡,從而引起步態(tài)異常。結(jié)論 本文提出的量化肌肉機(jī)械功方法可以深層次地分析肌肉之間的協(xié)同作用,對(duì)于偏癱患者異常步態(tài)的分析具有重要的意義。

Objective  The abnormal ankle angles of the subject are analyzed by quantizing the coordination between ankle dorsal and plantar flexors at different speeds to further analyze the patients' motor function. Methods The muscle strength, arm and joint angle obtained from the EMG-driven human musculoskeletal model are pre-processed, and the mechanical work of the dorsal and plantar flexors of hemiplegia side calculated by muscle strength and force arm difference are used to explain the anomaly reflected by the ankle joint angle curve.Results The plantar flexors are overactive and doing positive work, maintaining high-intensity centripetal contraction (mainly soleus and gastrocnemius) and the dorsal flexors weakness are almost unworked (mainly the tibialis anterior muscle) cause muscle coordination imbalance, leading to abnormal gait.Conclusions The method of quantitative muscle mechanical work proposed in this paper can deeply analyze the coordination relationship between muscles, and it is of great significance for the analysis of abnormal gait in patients with hemiplegia.

參考文獻(xiàn):

1.  胡永善.新編康復(fù)醫(yī)學(xué)[M].上海:復(fù)旦大學(xué)出版社,2005:171-176.

2.  李威,曾祥斌,章榮,等. 核心穩(wěn)定性訓(xùn)練對(duì)腦卒中偏癱患者步態(tài)時(shí)空參數(shù)和對(duì)稱(chēng)性參數(shù)的影響[J]. 中國(guó)康復(fù)醫(yī)學(xué)雜志. 2014,29(9):816–22. 

Li W ,Zeng X ,Zhang R ,et al. The effects of core stability training on temporal-spatial and symmetry parameters of gait of patients with hemiplegia after stroke.[J].Chinese Journal of Rehabilitation Medicine,2014,29(9):816-822.

3.  克努森.生物力學(xué)基礎(chǔ)[M].北京:人民體育出版社,2012:69-78.

4.  Hug F.Can muscle coordination be precisely studied by surface electromyography? [J].Journal of Electromyography and Kinesiology, 2011,21(1):1–12.

5.   Pandy MG , Andriacchi TP . Muscle and Joint Function in Human Locomotion[J]. Annual review of Biomedical Engineering, 2010, 12(1):401-433.

6.  Zajac FE . Muscle coordination of movement: a perspective.[J]. Journal of Biomechanics, 1993, 26 (Suppl 1):109. 

7.  Leung J , Smith R , Harvey LA , et al. The impact of simulated ankle plantarflexion contracture on the knee joint during stance phase of gait: A within-subject study[J]. Clinical Biomechanics, 2014, 29(4):423-428. 

8.  Fujita K , Miaki H , Fujimoto A , et al. Factors affecting premature plantarflexor muscle activity during hemiparetic gait[J]. Journal of Electromyography and Kinesiology, 2018, 39:99–103. 

9.  曹輝,王子羲,季林紅,等. 速滑中腿部肌肉協(xié)調(diào)性同步肌電分析[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版, 2005,45(8):1072-1075.

Cao H , Wang Z, Ji L , et al. Synchronized surface electromyography for muscular coordination of legs in speed skating[J]. Journal of Tsinghua University,2005,45(8):1072-1075.

10.  王麗,張秀峰,馬巖,等.腦卒中患者上肢康復(fù)機(jī)器人及評(píng)價(jià)方法綜述[J].北京生物醫(yī)學(xué)工程,2015,34(5):526-532.

Wang L , Zhang XF , Ma Y ,et al. Summary of rehabilitation robot for upper limbs and evaluation methods for stroke patients[J].Beijing Biomedical Engineering, 2015, 34(5):526-532.

11.  Neptune RR , Zajac FE , Kautz SA . Muscle force redistributes segmental power for body progression during walking[J]. Gait & Posture, 2004, 19(2):194-205. 

12.  Liu MQ , Anderson FC , Pandy MG , et al. Muscles that support the body also modulate forward progression during walking[J]. Journal of Biomechanics, 2006, 39(14):2623-2630. 

13.  Higginson JS, Zajac FE, Neptune RR, et al. Muscle contributions to support during gait in an individual with post-stroke hemiparesis. [J]. Journal of Biomechanics. 2006,39(10):1769–1777. 

14.  Sritharan P , Lin YC , Pandy MG . Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait[J]. Journal of Orthopaedic Research, 2012, 30(10): 1586-1595. 

15. Moissenet F , Chèze, L, Dumas R . Individual muscle contributions to ground reaction and to joint contact, ligament and bone forces during normal gait[J]. Multibody System Dynamics, 2017, 40(2):193-211.

16.  Correa TA , Crossley KM , Kim HJ , et al. Contributions of individual muscles to hip joint contact force in normal walking[J]. Journal of Biomechanics, 2010, 43(8):1618-1622. 

17. Pandy MG , Andriacchi TP . Muscle and joint function in human locomotion[J]. Annual Review of Biomedical Engineering, 2010, 12(1):401-433. 

18.  Roetenberg D , Buurke JH , Veltink PH , et al. Surface electromyography analysis for variable gait[J]. Gait & Posture, 2003, 18(2):109-117. 

19.  Olney SJ , Griffin MP , Mcbride ID . Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: a regression approach[J]. Physical Therapy, 1994,74(9):872-885.

20.  Chen G , Patten C , Kothari DH , et al. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds[J]. Gait & Posture, 2005, 22(1):51-56.

21. Delp SL , Anderson FC , Arnold AS , et al. OpenSim: open-source software to create and analyze dynamic simulations of movement[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(11):1940-1950. 

22.  Meyer AJ , Patten C , Fregly BJ . Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry[J]. PLos One, 2017, 12(7):e0179698. 

23.  宋和勝, 錢(qián)競(jìng)光, 唐瀟, 等. 基于軟件OpenSim的人體運(yùn)動(dòng)建模理論及其應(yīng)用領(lǐng)域概述.[J]. 醫(yī)用生物力學(xué), 2015,30(4):373-379.

Song HS,Qian JG,Tang X. Summary of software OpenSim with focus on its human motion modeling theory and application field[J]. Journal of Medical Biomechanics,2015,30(4):373-379.

24.  John CT , Seth A , Schwartz MH , et al. Contributions of muscles to mediolateral ground reaction force over a range of walking speeds[J]. Journal of Biomechanics, 2012, 45(14):2438-2443. 

25.  Hamill J , Bates BT , Knutzen KM , et al. Variations in ground reaction force parameters at different running speeds[J]. Human Movement Science, 1983, 2(1-2):47-56. 

26.  Holden JP , Cavanagh PR . The free moment of ground reaction in distance running and its changes with pronation[J]. Journal of Biomechanics, 1991, 24(10):887-897. 

27.  Jung Y , Jung M , Lee K , et al. Ground reaction force estimation using an insole-type pressure mat and joint kinematics during walking[J]. Journal of Biomechanics, 2014, 47(11):2693-2699. 

28.  Willemsen ATM , Bloemhof F , Boom HBK . Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(12):1201-1208. 

29. Williamson R , Andrews BJ . Gait event detection for FES using accelerometers and supervised machine learning[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(3):312-319.

30. Youdas JW , Atwood AL , Harris-Love MO , et al. Measurements of temporal aspects of gait obtained with a multimemory stopwatch in persons with gait impairments[J]. Journal of Orthopaedic & Sports Physical Therapy, 2000, 30(5):279-286.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話(huà):010-64456508  傳真:010-64456661
電子郵箱:[email protected]