51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
卷積神經(jīng)網(wǎng)絡(luò)在肝癌病理切片圖像分類中的應(yīng)用

Application of convolutional neural network in image classification of liver cancer pathological section

作者: 茹仙古麗·艾爾西丁  艾爾潘江·庫德來提  嚴(yán)傳波  姚娟 
單位:1新疆醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院(烏魯木齊830011) 2 新疆醫(yī)科大學(xué)醫(yī)學(xué)工程技術(shù)學(xué)院(烏魯木齊830011) 3 新疆醫(yī)科大學(xué)第一附屬醫(yī)院放射科(烏魯木齊830054)
關(guān)鍵詞: 卷積神經(jīng)網(wǎng)絡(luò);  肝臟組織切片圖像;  Inception  V3;  圖像分類 
分類號(hào):R318.04;TP751
出版年·卷·期(頁碼):2020·39·1(29-33)
摘要:

目的 探討基于卷積神經(jīng)網(wǎng)絡(luò)的肝臟組織切片圖像正常和病變性分類方法的可行性及應(yīng)用價(jià)值。方法 使用一種能夠自動(dòng)學(xué)習(xí)圖像特征并分類的方法,先利用原始的Inception V3 模型對(duì)肝臟組織切片數(shù)據(jù)集上進(jìn)行訓(xùn)練,然后在原始模型的基礎(chǔ)上通過微調(diào)得到改進(jìn)的Inception V3模型,最后用改進(jìn)的模型來實(shí)現(xiàn)肝臟組織切片圖像正常和病變性兩種類型的分類。結(jié)果 改進(jìn)后的Inception V3模型對(duì)肝臟切片圖像的分類結(jié)果較佳,平均分類準(zhǔn)確率達(dá)到99.2%。結(jié)論 卷積神經(jīng)網(wǎng)絡(luò)的肝臟組織切片圖像正常和病變性分類方法可行、合理,改進(jìn)的Inception V3模型的分類效果較好。

Objective To investigate the feasibility and application value of normal and pathological classification of liver tissue slices based on convolution neural network.Methods Using a method that can automatically learn image features and classify, we first use the original inception v3 model to train the liver tissue slice data set, then we can get the improved inception v3 model by fine-tuning the original model. At last, we use the improved model to realize the classification of liver tissue slice image of normal and pathological two types.Results The improved Inception V3 model has better classification results for liver slice images with an average Average classification accuracy of 99.2%.Conclusions The normal and pathological classification of the liver tissue slice images of the convolution neural network is feasible and reasonable, and the improved classification effect of the Inception V3 model is suitable.

參考文獻(xiàn):

[1]Chen WQ,Zheng RS,Baade, Peter D,et a1.Cancer statistics in China,2015[J].CA: A Cancer Journal For Clinicians,2016,66(2):115-132.

[2]Khazaei Z,Sohrabivafa M,Momenaba V.Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide prostate cancers and their relationship with the human development index[J].Advances in Human Biology,2019,9(3):245-250.

[3]楊秉輝,任正剛,湯釗猷.關(guān)于肝癌診斷與分期標(biāo)準(zhǔn)的討論[J].中華肝癌病雜志,2000,8(3):133-134.

[4]Kuppili V,Biswas M,Sreekumar A,et al.Extreme learning machine framework for risk stratification of fatty liver disease using ultrasound tissue characterization[J].Journal Of Medical Systems,2017,41(10):152.

[5] Conze PH,Noblet V,Rousseau F,et al.Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans[J].International Journal Of Computer Assisted Radiology And Surgery,2017,12(2):223-233.

[6]郝濤,張智.基于BP神經(jīng)網(wǎng)絡(luò)的原發(fā)性肝癌CT圖像紋理分析[J].中國數(shù)字醫(yī)學(xué),2013,8(8):73-76.

Hao T,Zhang Z.Primary hepatic carcinoma texture analysis based on CT image[J].China Digital Medicine,2013,8(8):73-76

[7]劉建華,王建偉.基于圖像處理的CT圖像肝癌診斷技術(shù)研究[J].清華大學(xué)學(xué)報(bào),2014,54(7):917-923.

Liu JH,Wang JW.Liver cancer diagnosis based on CT image processing[J].Journal Of Qinghua University,2014,54(7):917-923.

[8]祁亮,沈潔.機(jī)器學(xué)習(xí)在肝癌診療領(lǐng)域的應(yīng)用進(jìn)展[J].癌癥進(jìn)展,2019,17(5):519-525.

Yan L, Shen J.Progress in the application of machine learning in the field of liver cancer diagnosis and treatment[J].Oncology Progress,2019,17(5):519-525.

[9]Rajpurkar P, Hannun AY, Haghpanahi M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[EB/OL].[2018-10-23]. http://cn.arxiv.org/abs/1707.01836.

[10]Arevalo J, Gonzalez FA, Ramos-Pollan R, et al. Convolutional neural networks for mammography mass lesion classification [C]//37th Annual International Conference Of The IEEE Engineering In Medicine & Biology Society. Milan: IEEE, 2015: 797.

[11]趙鵬飛,趙涓涓,強(qiáng)彥,等.多輸入卷積神經(jīng)網(wǎng)絡(luò)肺結(jié)節(jié)檢測方法研究[J].計(jì)算機(jī)科學(xué),2018,45(1):162-166.

Zhao PF,Zhao JJ,Qiang Y,et al.Study on detection method of pulmonary nodules with multiple input convolution neural network[J].Computer Science,2018,45(1):162-166.

[12]王巖.卷積神經(jīng)網(wǎng)絡(luò)在肝穿刺圖像分類中的應(yīng)用[J].電腦知識(shí)與技術(shù),2018, 14(25):203-205.

     Wang Y.Application of onvolution neural network in image classification of liver puncture[J].Computer Knowledge And Technology,2018, 14(25):203-205.

[13]劉飛,張俊然,楊豪.基于深度學(xué)習(xí)的醫(yī)學(xué)圖像識(shí)別研究進(jìn)展[J].中國生物醫(yī)學(xué)工程學(xué)報(bào),2018, 37(1):86-94.
Liu F,Zhang JR,Yang H.Research progress of medical image recognition based on deep learning[J].Chinese Journal Of Biomedical Engineering,2018, 37(1):86-94.

[14]張晴晴, 劉勇, 王智超,等.卷積神經(jīng)網(wǎng)絡(luò)在語音識(shí)別中的應(yīng)用[J].網(wǎng)絡(luò)新媒體技術(shù), 2014, 3(6):39-42.

Zhang QQ, Liu Y, Wang ZC.Application of convolutional neural network in speech recognition[J].Network New Media Technology,2014, 3(6):39-42.

[15]張文宇,劉暢.卷積神經(jīng)網(wǎng)絡(luò)算法在語音識(shí)別中的應(yīng)用[J].信息技術(shù),2018, (10):147-152.

Zhang WY,Liu C.Application of convolutional neural network algorithm in speech recognition[J].Information Technology,2018, (10):147-152.

[16]趙顯達(dá),黃歡.基于卷積神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別的研究[J].信息技術(shù),2018, (9):15-19,23.

Zhao XD,Huang H.Research on face recognition based on convolutional neural network[J].Information Technology,2018, (9):15-19,23.

[17]陸紅.基于卷積神經(jīng)網(wǎng)絡(luò)人臉識(shí)別方法研究[J].現(xiàn)代信息科技,2018, 2(10):102-103,106.

Lu H.Face Recognition method base on convolution neural network[J].Modern Informationn Technology,2018, 2(10):102-103,106.

[18]丁冠祺,劉宇涵,楊皓博.基于卷積神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別[J].信息記錄材料,2018, 19(9):48-49.

Ding GQ,Liu YH,Yang HB.Face recognition based on convolutional neural network[J].Information Recording Materials,2018, 19(9):48-49.

[19]Park E, Han X, Berg T L, et al. Combining multiple sources of knowledge in deep CNNs for action recognition[C]// IEEE Winter Conference On Applications of Computer Vision. IEEE Computer Society, 2016:1-8.

[20]蔡國永, 夏彬彬.基于卷積神經(jīng)網(wǎng)絡(luò)的圖文融合媒體情感預(yù)測[J].計(jì)算機(jī)應(yīng)用, 2016, 36(2):428-431.

Cai GY,Xia BB.Multimedia sentiment analysis based on convolutional neural network[J].Journal Of Computer Applications,2016, 36(2):428-431.

[21]Yosinski J,Clune J,Benjio Y,et a1.How transferable are features in deep neural networks? [J].EprintArxiv,2014,27: 3320-3328.

[22]鄒鐵.基于深度卷積網(wǎng)絡(luò)的圖像分類算法研究[J].安徽電子信息職業(yè)技術(shù)學(xué)院學(xué)報(bào),2017,16(6):203-208.

Zou T.On the image classification algorithm based on deep convolution neural network[J].Journal Of Anhui Vocational College Of Electronics And Information Technology,2017,16(6):203-208.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]