51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于靜息態(tài)fMRI的動態(tài)功能連接特征的智商預(yù)測

Prediction of intelligence quotient based on the characteristics of dynamic functional connectivity in resting state fMRI

作者: 朱鴻睿 
單位:北京交通大學計算機與信息技術(shù)學院(北京100044)
關(guān)鍵詞: 動態(tài)功能連接;智商;靜息態(tài)fMRI  ;回歸 
分類號:
出版年·卷·期(頁碼):2020·39·1(62-68)
摘要:

目的 近年來越來越多的研究表明大腦不同腦區(qū)間的功能連接的動態(tài)波動具有生理意義,但關(guān)于智商(intelligence quotient,IQ)的相關(guān)研究較少。本文基于動態(tài)功能連接(dynamic functional connections, DFC)提取動態(tài)特征對智商進行評估,為智商預(yù)測探索新的特征參數(shù)和預(yù)測模型。 方法 基于97個兒童靜息態(tài)功能磁共振圖像(resting state functional magnetic resonance image,RS-fMRI),采用滑動窗相關(guān)計算方法構(gòu)建DFC。基于DFC提取相應(yīng)時域、頻域特征,通過彈性網(wǎng)(elastic-net,E-Net)和最小角回歸(least angle regression,LAR)算法建立智商回歸模型進行個體智商預(yù)測,并通過置換檢驗驗證其顯著性。 結(jié)果 基于動態(tài)功能連接的特定頻段(0.075-0.1Hz)頻域特征和波動均值(Mean)特征,可以實現(xiàn)對智商的基本預(yù)測,且頻域特征的表現(xiàn)優(yōu)于時域特征。另外,基于LAR算法構(gòu)建的預(yù)測模型的表現(xiàn)優(yōu)于E-Net算法。 結(jié)論 個體腦功能連接隨時間的動態(tài)波動足以預(yù)測個體智商,且特定頻段的頻域特征和LAR算法能夠提高預(yù)測準確率,這可為個體智商評估研究和動態(tài)功能連接的應(yīng)用提供新的思路。

Objective In recent years, studies have shown that the dynamic fluctuations of functional  connectivity can reflect physiological information, but few studies about intelligence quotient (IQ). This study evaluated IQ based on features extracted from dynamic functional connectivity (DFC), and new feature parameters and prediction models are explored for IQ prediction. Methods In the study resting state functional magnetic resonance imaging (RS-fMRI) data of  97 children subjects were selected, and the sliding window technique was used to constructed DFC. Based on DFC, the time domain and frequency domain characteristics were extracted, IQ regression models were established with the use of elastic net (E-Net) and least angle regression (LAR) algorithm, and its significance was verified by Permutation test. Results Individuals’ IQ could be predicted by frequency domain of 0.075-0.01Hz and the mean strength of dynamic fluctuation, the performance of frequency domain was better than that of time domain characteristics. Besides, the performance of the model based on the LAR algorithm was better than that of the E-Net algorithm. Conclusions IQ can be predicted by DFC characteristics, the frequency domain characteristics of specific frequency band and LAR algorithm can improve the prediction accuracy. This result provides new ideas for further research about  IQ prediction and dynamic functional connectivity.

參考文獻:

[1] Song M, Zhou Y, Li J, et al. Brain spontaneous functional connectivity and intelligence[J]. Neuroimage, 2008, 41(3):1168-1176.

[2] Langer N, Gianotti,LRR.,Knoch,D., et al.Functional brain network efficiency predicts intelligence[J].Human brain mapping,2012,33(6):1393-1406.

[3] Wang LY , Wee CY , Suk H , et al. MRI-based intelligence quotient (IQ) estimation with sparse learning[J]. Plos One, 2015, 10(3):e0117295-.

[4] Allen EA , Damaraju E , Plis SM , et al. Tracking whole-brain connectivity dynamics in the resting state[J]. Cerebral Cortex, 2014, 24(3):663-676.

[5] Liu J , Liao X , Xia M , et al. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns[J]. Human Brain Mapping, 2018, 39(2):902.

[6] Tian L , Li Q , Wang C , et al. Changes in dynamic functional connections with aging[J]. NeuroImage, 2018, 172:31-39.

[7] Hutchison RM , Womelsdorf T , Allen EA , et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. NeuroImage, 2013, 80(1):360-378.

[8] Suk HI , Wee CY , Lee SW , et al. State-space model with deep learning for functional dynamics estimation in resting-state fMRI[J]. Neuroimage, 2016, 129:292-307.

[9] Consortium T A. The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience[J]. Frontiers in Systems Neuroscience, 2012, 6:62.

[10] Dosenbach NU, Nardos B, Cohen A L, et al. Prediction of individual brain maturity using fMRI[J]. Science, 2010,329(5997):1358-1361

[11] Damaraju E , Allen EA , Belger A , et al. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia[J]. NeuroImage: Clinical, 2014,5:298-308.

[12] Zalesky A, Breakspear M. Towards a statistical test for functional connectivity dynamics[J]. Neuroimage, 2015,114:466-470.

[13] Yaesoubi M , Allen EA , Miller RL , et al. Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information[J]. NeuroImage, 2015, 120:133-142.

[14] 趙欣, 張雄, 王偉偉, 等. 年齡相關(guān)的動態(tài)功能連接網(wǎng)絡(luò)特征研究[J]. 生物醫(yī)學工程學雜志, 2017(02):7-13.

Zhao X, Zhang X, Wang WW, et al. Research on the characteristics of the dynamic functional connectivity network related to aging[J]. Beijing Biomedical Engineering, 2017(02):7-13

[15] Zou H. The adaptive lasso and its oracle properties[J]. Journal of Industrial and Management Optimization (JIMO), 2006, 101(476):1418-1429.

[16] Khundrakpam BS , Tohka J , Evans AC . Prediction of brain maturity based on cortical thickness at different spatial resolutions[J]. NeuroImage, 2015, 111:350-359.

[17] Bunea F , She Y , Ombao H , et al. Penalized least squares regression methods and applications to neuroimaging[J]. Neuroimage, 2011, 55(4):1519-1527.

[18] Wager TD , Atlas LY , Leotti LA , et al. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience[J]. Journal of Neuroscience, 2011, 31(2):439-452.

[19] Efron B, Hastie T, Johnstone I, et al. Least angle regression[J]. Annals of Statistics, 2004, 32(2):407-451.

[20] 皇甫浩然,楊劍,楊陽.基于fMRI動態(tài)功能連接的抑郁癥患者分類研究[J].計算機應(yīng)用研究, 2017,34(3):678-682.

Huangfu HR, Yang J,Yang Y. Classifying patients with depression based on fMRI dynamic functional connectivity[J]. Application Research of Computers, 2017,34(3):678-682.

[21] 蔣偉雄, 曾令李, 秦鍵, 等. 利用動態(tài)功能連接對健康危險性行為特征的預(yù)測[J]. 電子科技大學學報, 2018,47(6):927-931.

Jiang WX, Zeng LL, Qin J, et al. Prediction of the health-risk behavior by using dynamic functional connectivity[J]. Journal of University of Electronic Science and Technology of China, 2018,47(6):927-931.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]