51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
超聲神經(jīng)刺激作用機(jī)制的研究現(xiàn)狀

Researchstatus on the mechanism of ultrasonic neurostimulation

作者: 代林志  張淙悅  鄭政 
單位:上海理工大學(xué)(上海 200093)
關(guān)鍵詞: 超聲神經(jīng)刺激;  作用機(jī)制;  聲輻射力;  空化 
分類(lèi)號(hào):R318.04; R445.2
出版年·卷·期(頁(yè)碼):2020·39·1(103-107)
摘要:

相比于傳統(tǒng)電刺激、磁刺激,超聲神經(jīng)刺激具有無(wú)創(chuàng)、可深部聚焦、空間分辨率高等優(yōu)勢(shì),在神經(jīng)疾病治療領(lǐng)域逐漸受到人們的重視。然而,盡管超聲神經(jīng)刺激近年來(lái)發(fā)展迅速,其作用機(jī)制仍尚不明確。超聲的生物作用主要為熱作用和機(jī)械作用,目前學(xué)術(shù)界已經(jīng)一致排除了熱作用在超聲神經(jīng)刺激中的影響,但對(duì)機(jī)械作用的具體作用過(guò)程尚未形成統(tǒng)一觀點(diǎn)。本文闡述了超聲神經(jīng)刺激作用機(jī)制的目前研究狀況,詳細(xì)討論了聲輻射力假說(shuō)、膜內(nèi)空化理論,并提出了一種超聲神經(jīng)刺激作用機(jī)制的可能研究路徑。

Compared with traditional electrical stimulation and magnetic stimulation, ultrasonic neurostimulation has the advantages of non-invasive, deep focusing and high spatial resolution, becoming increasingly appreciated in the field of neurological diseases treatment. However, despite the rapid development of ultrasonic neurostimulation in recent years, the mechanism of its action still remains unclear. The biological effects of ultrasound are mainly thermal and mechanical. At present, the academia has unanimously ruled out the influence of thermal action in ultrasonic neurostimulation, but a unified view has not been formed yet on the specific action process of mechanical action. This paper describes the current research status of the mechanism of ultrasonic neurostimulation, discusses in detail the two hypotheses of acoustic radiation force and cavitation in membrane, and proposes one possible research path in the mechanism of ultrasonic nerve stimulation.

參考文獻(xiàn):

[1] Rokyta R, Fricova J. Noninvasive neuromodulation methods in the treatment of chronicpain[M]. Germany:    IntechOpen, 2014.

[2] Rasche D,  Knotkova H. Textbook of neuromodulation[M]. Germany: Springer Verlag, 2015.

[3]  Garcia-Larrea L, Peyron R. Motor cortex stimulation for neuropathic pain: From phenomenology to mechanisms[J]. NeuroImage, 2007, 37(5): 71-79.

[4] Padberg F, et al. Repetitive transcranial magnetic stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity[J]. Neuropsychopharmacoloty, 2002, 27(4): 638-645.

[5]  Groves DA, Browm VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects[J]. Neurosci Biobehav Rev, 2005, 29(3): 493-500.

[6] Deng ZD, et al. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs[J]. Brain Stimulation, 2013, 6(1): 1-15.

[7] 周麗娜, 王世民. 腦深部電刺激術(shù)治療帕金森病研究進(jìn)展[J]. 國(guó)際神經(jīng)病學(xué)神經(jīng)外科學(xué)雜志, 2007, 34(2):  150-154.

 [8] 呂浩, 唐勁天. 經(jīng)顱磁刺激技術(shù)的研究和進(jìn)展[J]. 中國(guó)醫(yī)療器械信息, 2006, 12(5): 28-32.

 [9] 黎國(guó)鋒, 邱維寶. 超聲神經(jīng)調(diào)控技術(shù)與科學(xué)儀器[J]. 生命科學(xué)儀器, 2017, 15(1): 3-8.

 [10] Kim H, Fischer K, Park S, et al. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound[J]. Ultrasound in Medicine & Biology, 2012, 38(9): 1568-1575.

[11] Younan Y, Deffieux T, Larrat B, et al. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation[J]. Medical Physics, 2013, 40(8).

[12] Hameroff S, Trakas M, Duffield C, et al. Transcranial ultrasound (TUS) effects on mental states: a pilot study[J]. Brain Stimulation, 2013, 6(3): 409-415.

[13] Kubanek J. Neuromodulation with transcranial focused ultrasound[J]. Neurosurgical Focus, 2018, 38(6).

[14] Lin ZR, Zhou W, Huang XW, et al. On-chip ultrasound modulation of pyramidal neuronal activity in hippocampal slices[J]. Advanced Biosystems, 2018, 2(8 ):1800041.

[15] Naor O, Krupa S, Shoham S. Ultrasonic neuromodulation[J]. Journal of Neural Engineering, 2016, 13: 031003.

[16] Tyler WJ, Lani SW, Hwang GM, et al.Ultrasonic modulation of neural circuit activity[J]. Current Opinion in Neurobiology, 2018, 50: 222-231.

[17] 沈雪蓮, 嚴(yán)飛, 趙云. 超聲神經(jīng)調(diào)控的研究進(jìn)展[J]. 臨床超聲醫(yī)學(xué)雜志, 2016, 18(11): 764-766.

    Shen XL, Yan F, Zhao Y. Research progress of neuromodulation with ultrasound[J].Journal of Ultrasound in Clinical Medicine, 2016, 18(11): 764-766.

[18] Tyler WJ, Tufail Y,Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity,low-frequency ultrasound.Plos One[J]. Plos One, 2008, 3(10): e3511.

[19] Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits[J]. Neuron, 2010, 66(5): 681-694.

[20] Kubanek J, Shukla P, Das A, et al. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system[J]. The Journal of Neuroscience, 2018, 38(12): 3081-3091.

[21] Nightingale KR, Church CC, Harris G, et al. Conditionally increased acoustic pressures in nonfetal diagnostic ultrasound examinations without contrast agents: a preliminary assessment[J]. Journal of Ultrasound in Medicine, 2015, 34(7): 1-41.

[22] Vykhodtseva N, Hynynen K, Damianou C,et al. Histological effects of high intensity pulsed ultrasound exposure with subharmonic emmission in rabbit brain in vivo[J].  Ultrasound in Medicine and Biology, 1995, 21: 969-979.

[23] Gateau J, Chauvet D, Fink M, et al. In vivo bubble nucleation probability in sheep brain tissue[J]. Physics in Medicine and Biology, 2011, 56: 7001-7015.

[24] Mihran RT, Barnes FS, Wachtel H. Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse[J]. Ultrasound Med.Biol, 1990, 16: 297-309.

[25] Wahab RA, Choi M. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model[J]. Medical Physics, 2012, 39 (7): 4274-4283..

[26] Kubanek J, Chen D, Marsh J, et al. Ultrasound modulates ion channel currents[J]. Scientific Reports, 2016, 26(6): 24170.

[27] Prieto ML, Firouzi K, Maduke M, et al. Activation of Piezo1 but not NaV1.2 Channels by Ultrasound at 43 MHz[J]. Ultrasound in Medicine & Biology, 2018, 44(6) :1217-1232.

[28] Meng L. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL[J]. Nano Letters, 2018, 18(7): 4148-4155.

[29] Menz MD, Ye P, Firouzi K, et al. Physical mechanisms of ultrasonic neurostimulation of the retina[N]. Neuroscience, 2016-12-16.

[30] Tan JCH, Kalapesi FB, Coroneo MT, et al. Mechanosensitivity and the eye: cells coping with the pressure[J].British Journal of Ophthalmology, 2006, 90(3): 383-388.

[31] Krizaj D. chapter 20, Polymodal sensory intergation in retinal ganglion cells[J]. HHS Public Access, 2016, 854: 693–698.

[32] King RL, Brown JR, Newsome WT, et al. Effective parametersfor ultrasound-induced in vivo neurostimulation[J]. Ultrasound Med Biol, 2013, 39(9): 312-331.

[33] Krasovitski B, Frenkel V, Shohama S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects [J]. Proceedings of the National Academy of Sciences, 2011, 108(8): 3258-3263.

[34] Plaksin M, Shoham S, Kimmel E, et al. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation[J]. Physical Review X, 2014, 4(1): 331-344.

[35] 胡勝男, 吳永亮, 等. 一種用于腦神經(jīng)刺激的程控超聲發(fā)生器[J]. 生物醫(yī)學(xué)工程學(xué)報(bào), 2017, 36(5): 589-595.

Hu SN, Wu YL. et al.The utility model relates to a program-controlled ultrasonic generator for brain nerve stimulation[J]. Journal of biomedical engineering, 2017, 36(5): 589-595.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]