51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種基于卷積神經(jīng)網(wǎng)絡(luò)的DIA數(shù)據(jù)預(yù)處理模型

A preprocessing model for dia data based on convolutional neural network

作者: 陳沖  鄭浩然 
單位:中國科學(xué)技術(shù)大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院( 合肥 230027)
關(guān)鍵詞: 蛋白質(zhì)組學(xué);  卷積神經(jīng)網(wǎng)絡(luò);  質(zhì)譜;  預(yù)處理;  相關(guān)性 
分類號(hào):R318.04
出版年·卷·期(頁碼):2020·39·1(56-61)
摘要:

目的 數(shù)據(jù)非依賴性采集( data independent acquisition,DIA) 是目前針對(duì)大通量蛋白質(zhì)組學(xué) 分析常用的一種數(shù)據(jù)采集方式。 在對(duì) DIA 數(shù)據(jù)無目標(biāo)的分析方式中,由于無法預(yù)測(cè)肽段出現(xiàn)在 DIA 數(shù) 據(jù)中的位置,需要對(duì)譜中所有的峰進(jìn)行分析。 但譜中含有大量的噪聲峰,這些峰會(huì)嚴(yán)重影響后續(xù)蛋白質(zhì) 定性定量分析的效率與效果,所以在 DIA 數(shù)據(jù)的無目標(biāo)分析過程中先進(jìn)行預(yù)處理以去除噪聲峰就成了 很重要的 一 步。 為 了 能 充 分 利 用 從 DIA 數(shù) 據(jù) 中 提 取 出 來 的 肽 段 在 一 級(jí) 質(zhì) 譜 ( first stage of mass spectrometry,MS1) 和二級(jí)質(zhì)譜( second stage of mass spectrometry,MS2) 中的峰信息,提出質(zhì)譜卷積神經(jīng)網(wǎng) 絡(luò)( mass spectrometry convolutional neural network,MSCNN) 模型。 方法 不同于傳統(tǒng)的方法,本文首先提 出適用于 MSCNN 網(wǎng)絡(luò)結(jié)構(gòu)的樣本提取流程,然后利用 MSCNN 對(duì)樣本進(jìn)行訓(xùn)練和學(xué)習(xí),該模型可以最 大限度利用肽在 MS1 和 MS2 中的特征,最后通過觀察模型在測(cè)試集中的結(jié)果來驗(yàn)證模型的效果。 結(jié)果 和傳統(tǒng)算法相比,在保證真峰處理效果大致相同的情況下,MSCNN 模型過濾噪聲峰的數(shù)量提高了約 11.2%。 結(jié)論 本文提出的 MSCNN 模型可以更有效地去除 DIA 數(shù)據(jù)中的噪聲峰。

Objective DIA ( data?independent acquisition) data is currently a commonly used data acquisition method for high?throughput proteomics analysis. In the untargeted analysis of DIA data,all peaks in the spectra need to be analyzed because it is impossible to predict where the peptides will appear in the DIA data. However,the spectra contains a large number of noise peaks,which have a great influence on the efficiency and effect of subsequent identification and quantification of protein. Therefore,the preprocessing to remove noise peaks is a critical step during the untargeted analysis of DIA data. In order to make full use of the features of peptides extracted from DIA data in MS1 ( first stage of mass spectrometry) and MS2 ( second stage of mass spectrometry) , we propose a MSCNN ( mass spectrometry convolutional neural network ) model based on convolutional neural network. Methods Unlike traditional methods, this paper first proposes a sample extraction process suitable for MSCNN network structure, and then uses the sample to train MSCNN,which can make the best use of the features of peptides in MS1 and MS2. Finally,the effect of our model is obtained by observing the results of test set. Results Compared with the traditional algorithm,the number of filtered noise peaks of the MSCNN model is increased by about 11?? 2% under the condition that the true peak processing effect is substantially the same. Conclusions The MSCNN model proposed in this paper can remove noise peaks in DIA data more effectively.

參考文獻(xiàn):

[ 1 ]   Peng J, Elias JE, Thoreen CC, et al. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry ( LC / LC-MS / MS) for large-scale protein analysis: the yeast proteome [ J] . Journal of Proteome Research, 2003, 2 (1) : 43-50. [ 2 ]   Schwudke D, Oegema J, Burton L, et al. Lipid profiling by multiple precursor and neutral loss scanning driven by the data? dependent acquisition[ J] . Analytical Chemistry,2006,78 ( 2) : 585-595. [ 3 ]   Gillet LC,Navarro P,Tate S,et al. Targeted data extraction of the MS / MS spectra generated by data?independent acquisition: a new concept for consistent and accurate proteome analysis [ J ] . Molecular & Cellular Proteomics,2012,11(6) : O111. [ 4 ]   Bilbao A, Varesio E, Luban J, et al. Processing strategies and software solutions for data?independent acquisition in mass spectrometry[ J] . Proteomics,2015,15(5-6) : 964-980. [ 5 ]   Koopmans F, Ho JTC, Smit AB, et al. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA,WiSIM-DIA,and Untargeted DIA[ J] . Proteomics,2018,18 (1) : 1700304. [ 6 ]   Liu H,Sadygov RG,Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics [ J] . Analytical Chemistry,2004,76(14) : 4193-4201. [ 7 ]   Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions [ J] . Nature Methods,2012,9(6) : 555-566. [ 8 ]   Rost HL,Rosenberger G,Navarro P,et al. OpenSWATH enables automated,targeted analysis of data?independent acquisition MS data[ J] . Nature Biotechnology,2014,32(3) : 219-223. [ 9 ]   Bernhardt OM,Selevsek N,Gillet LC,et al. Spectronaut: A fast and efficient algorithm for MRM-like processing of data independent acquisition ( SWATH-MS ) data [ C ] / / Sjoberg, Judith . Proceedings of the 60th American Society for Mass Spectrometry ( ASMS ) Conference on Mass Spectrometry. Vancouver,Canada :Springer-Verlag ,2012: 68. [10]   MacLean B,Tomazela DM, Shulman N, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments[ J] . Bioinformatics,2010,26( 7) : 966 - 968. [11]   Reiter L, Rinner O, Picotti P, et al. mProphet: automated data processing and statistical validation for large-scale SRM experiments[ J] . Nature Methods,2011,8(5) : 430-435. [12]   Tsou CC, Avtonomov D, Larsen B, et al. DIA?Umpire: comprehensive computational framework for data?independent acquisition proteomics[ J] . Nature Methods,2015,12( 3) : 258- 264. [13]   Tsou CC,Tsai CF,Teo GC,et al. Untargeted,spectral library?free analysis of data?independent acquisition proteomics data generated using Orbitrap mass spectrometers [ J ] . Proteomics, 2016,16(15-16) : 2257-2271. [14]   Wang J,Tucholska M,Knight JDR,et al. MSPLIT?DIA: sensitive peptide identification for data?independent acquisition[ J] . Nature Methods,2015,12(12) : 1106-1108. [15]   Li Y, Zhong CQ, Xu X, et al. Group?DIA: analyzing multiple data?independent acquisition mass spectrometry data files [ J ] . Nature Methods,2015,12(12) : 1105-1106. [16]   Toumi ML, Desaire H. Improving mass defect filters for human proteins[ J] . Journal of Proteome Research,2010,9(10) : 5492- 5495. [17]   Radenovic F,Tolias G,Chum O. Fine?tuning CNN image retrieval with no human annotation [ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(7) : 1655-1668. [18]   Zhang K, Zuo W, Chen Y, et al. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising [ J] . IEEE Transactions on Image Processing,2017,26(7) : 3142-3155. [19]   Li M,Zhang T, Chen Y, et al. Efficient mini?batch training for stochastic optimization [ C] / / KDD , Association for Computing Machinery,Special Interest Group on Knowledge Discovery and Data Mining , et al. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York :ACM,2014: 661-670. [20]   Bello I,Zoph B,Vasudevan V,et al. Neural optimizer search with reinforcement learning [ C ] / / International Conference on Machine Learning , International Machine Learning Society . Proceedings of the 34th International Conference on Machine Learning?Volume 70. Sydney,Australia :Curran Associates,Inc , 2017: 459-468.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]