[1] Consensus A. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis[J]. The American Journal of Medicine, 1993, 94(6): 646-650. [2] Wang Y, Tao Y, Hyman ME, et al. Osteoporosis in China[J]. Osteoporosis International, 2009, 20(10): 1651-1662. [3] Wang L, Museyko O, Su Y, et al. QCT of the femur: comparison between QCTPro CTXA and MIAF femur[J]. Bone, 2019, 120: 262-270. [4] González-Quevedo D, Bautista-Enrique D, Pérez-del-Río V, et al. Fracture liaison service and mortality in elderly hip fracture patients: a prospective cohort study[J]. Osteoporosis International, 2020,31(1): 77-84. [5] Wang X, Sanyal A, Cawthon PM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans[J]. Journal of Bone and Mineral Research, 2012, 27(4): 808-816. [6] Lochmüller EM, Miller P, Bürklein D, et al. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur[J]. Osteoporosis International, 2000, 11(4): 361-367. [7] Overton TR. Quantitative computed tomography [J]. Radiologic Clinics of North America, 2002, 06(03):219-228. [8] Viceconti M, Qasim M, Bhattacharya P, et al. Are CT-based finite element model predictions of femoral bone strengthening clinically useful?[J]. Current Osteoporosis Reports, 2018,16(3): 216-223. [9] Yang H, Ma X, Guo T. Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur[J]. Medical Engineering and Physics, 2010, 32(6):553-560. [10] 鄭江,吳起寧,秦四清,等. 掃描電鏡下老年性骨質(zhì)疏松患者骨微結(jié)構(gòu)的變化[J].陜西醫(yī)學(xué)雜志, 2003, 32(5):400-403. Zheng J, Wu QN, Qin SQ, et al. Changes of the microstructure of the bone from the osteoporotic patients under the scanning electron microscopy[J].Shaanxi Medical Journal, 2003, 32(5):400-403. [11] 裴葆青, 王田苗, 王軍強. 松質(zhì)骨微觀骨小梁結(jié)構(gòu)的生物力學(xué)有限元分析[J]. 北京生物醫(yī)學(xué)工程, 2008, 27(2):120-122. Pei BQ, Wang TM, Wang JQ. The comprehensive biomechanical analysis of microcosmic trabecular structure of cancellous bone[J]. Beijing Biomedical Engineering, 2008, 27(2):120-122. [12] Rajapakse CS, Leonard MB, Bhagat YA, et al. Micro–MR imaging–based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation[J]. Radiology, 2012, 262(3):912-920. [13] Nawathe S, Yang H, Fields AJ, et al. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body[J]. Journal of Biomechanics, 2015, 48(7): 1264-1269. [14] 徐輝煌, 張海宇, 林勇. 基于多粒度級聯(lián)森林的骨質(zhì)疏松性骨折預(yù)測研究[J]. 北京生物醫(yī)學(xué)工程, 2019, 38(4):384-391. Xu HH, Zhang HY, Lin Y. Prediction of osteoporotic fracture based on multi-grained cascade forest [J]. Beijing Biomedical Engineering, 2019, 38(4):384-391. [15] Rajapakse CS, Chang G. Micro-finite element analysis of the proximal femur on the basis of high-resolution magnetic resonance images[J]. Current Osteoporosis Reports, 2018, 16(6): 657-664. [16] Chang G, Rajapakse CS, Chen C, et al. 3-T MR Imaging of proximal femur microarchitecture in subjects with and without fragility fracture and nonosteoporotic proximal femur bone mineral density[J]. Radiology, 2018, 287(2): 608-619. [17] Rajapakse CS, Kobe EA, Batzdorf AS, et al. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing[J]. Bone, 2018, 108: 71-78.
|